1887

Abstract

A novel extremely halophilic archaeon, strain RHB-C, was isolated from a saturated brine pond of a solar saltern in Bolinao, Pangasinan, Philippines. Colonies were orange-red-pigmented, smooth, convex and round on a solid modified growth medium containing 25 % (w/v) of total salts. Cells of strain RHB-C on the solid modified growth medium were ovoid-shaped (0.89–2.66 µm long), while the cells in a liquid modified growth medium were rod-shaped (1.53–5.65 µm long and 0.45–1.03 µm wide). The strain was Gram-stain-negative, motile and strictly aerobic. Strain RHB-C grew with NaCl concentrations ranging from 10 to 30 % (w/v; optimum, 20–25 %), at pH 6.5–8.5 (optimum, pH 7.0–7.5) and at 20–55 °C (optimum, 40–45 °C). Furthermore, the strain grew even in the absence of Mg; however, when supplemented with Mg, growth was observed optimally at 0.2–0.4 M Mg. The 16S rRNA gene phylogeny inferred that the strain is a member of the genus and was related to CGMCC 1.3527 (99.0 %), DSM 3755 (98.8 %), Ch2 (98.8 %), NRC 34021 (98.4 %) and JCM 9100 (98.1 %). The ′ gene sequences also showed that strain RHB-C is related to JCM 12388 (97.1 %), JCM 9100 (97.1 %), JCM 9275 (96.5 %), JCM 14715 (96.5 %), JCM 10477 (96.3%), JCM 8880 (96.2%) and DSM 14210 (95.6 %). The DNA G+C content of strain RHB-C was 68.7 mol% (genome). Digital DNA–DNA hybridization (dDDH) and average nucleotide identity (ANI) values between strain RHB-C and the closely related species of were below 40 and 90 %, respectively, which are far below the thresholds to delineate a new species. The polar lipids of strain RHB-C were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulphate and sulfated mannosyl glycosyl diether. Based on dDDH and ANI values, and the significant morphological and physiological differences from known taxa, it is hereby suggested that strain RHB-C represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is RHB-C (=KCTC 4274=CMS 2103).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005231
2022-01-17
2024-04-24
Loading full text...

Full text loading...

References

  1. Gupta RS, Naushad S, Fabros R, Adeolu M. A phylogenomic reappraisal of family-level divisions within the class Halobacteria: proposal to divide the order Halobacteriales into the families Halobacteriaceae, Haloarculaceae fam. nov., and Halococcaceae fam. nov., and the order Haloferacales into the families, Haloferacaceae and Halorubraceae fam nov. Antonie van Leeuwenhoek 2016; 109:565–587 [View Article]
    [Google Scholar]
  2. McGenity TJ, Grant WD. Transfer of Halobacterium saccharovorum, Halobacterium sodomense, Halobacterium trapanicum NRC 34021 and Halobacterium lacusprofundi to the genus Halorubrum gen. nov., as Halorubrum saccharovorum comb. nov., Halorubrum sodomense comb. nov., Halorubrum trapanicum comb. nov., and Halorubrum lacusprofundi comb. nov. Syst Appl Microbiol 1995; 18:237–243 [View Article]
    [Google Scholar]
  3. Oren A, Arahal DR, Ventosa A. Emended descriptions of genera of the family Halobacteriaceae . Int J Syst Evol Microbiol 2009; 59:637–642 [View Article] [PubMed]
    [Google Scholar]
  4. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  5. Amoozegar MA, Siroosi M, Atashgahi S, Smidt H, Ventosa A. Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes. Microbiology 2017; 163:623–645 [View Article] [PubMed]
    [Google Scholar]
  6. de la Haba RR, Corral P, Sánchez-Porro C, Infante-Domínguez C, Makkay AM et al. Genotypic and lipid analyses of strains from the archaeal genus Halorubrum reveal insights into their taxonomy, divergence, and population structure. Front Microbiol 2018; 9:512 [View Article] [PubMed]
    [Google Scholar]
  7. Ventosa A, de la Haba RR, Sánchez-Porro C, Papke RT. Microbial diversity of hypersaline environments: a metagenomic approach. Curr Opin Microbiol 2015; 25:80–87 [View Article] [PubMed]
    [Google Scholar]
  8. Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J et al. Bergey’s Manual of Systematics of Archaea and Bacteria USA: John Wiley & Sons, Inc, Association with Bergey’s Manual Trust; 2015 pp 1–11 [View Article]
    [Google Scholar]
  9. Fullmer MS, Soucy SM, Swithers KS, Makkay AM, Wheeler R et al. Population and genomic analysis of the genus Halorubrum . Front Microbiol 2014; 5:140 [View Article] [PubMed]
    [Google Scholar]
  10. Kamekura M. Diversity of extremely halophilic bacteria. Extremophiles 1998; 2:289–295 [View Article] [PubMed]
    [Google Scholar]
  11. Papke RT, Koenig JE, Rodríguez-Valera F, Doolittle WF. Frequent recombination in a saltern population of Halorubrum . Science 2004; 306:1928–1929 [View Article] [PubMed]
    [Google Scholar]
  12. Elevi R, Assa P, Birbir M, Ogan A, Oren A. Characterization of extremely halophilic Archaea isolated from the Ayvalik Saltern, Turkey. World J Microbiol Biotechnol 2004; 20:719–725 [View Article]
    [Google Scholar]
  13. Infante-Domínguez C, de la Haba RR, Corral P, Sanchez-Porro C, Arahal DR. Genome-based analyses reveal a synonymy among Halorubrum distributum Zvyagintseva and Tarasov 1989; Oren and Ventosa 1996, Halorubrum terrestre Ventosa et al. 2004, Halorubrum arcis Xu et al. 2007 and Halorubrum litoreum Cui et al. 2007. Emended description of Halorubrum distributum Zvyagintseva and Tarasov 1989; Oren and Ventosa 1996. Int J Syst Evol Microbiol 2020; 70:1698–1705 [View Article]
    [Google Scholar]
  14. Papke RT, Corral P, Ram-Mohan N, de la Haba RR, Sánchez-Porro C et al. Horizontal gene transfer, dispersal and haloarchaeal speciation. Life 2015; 5:1405–1426 [View Article] [PubMed]
    [Google Scholar]
  15. Boucher Y, Douady CJ, Sharma AK, Kamekura M, Doolittle WF. Intragenomic heterogeneity and intergenomic recombination among haloarchaeal rRNA genes. J Bacteriol 2004; 186:3980–3990 [View Article] [PubMed]
    [Google Scholar]
  16. Licuanan WY, Cabreira RW, Aliño PM. Chapter 23. The Philippines. In Sheppard C. eds World Seas: An Environmental Evaluation 2nd edn: Academic Press; 2019 pp 515–537
    [Google Scholar]
  17. Oren A. Industrial and environmental applications of halophilic microorganisms. Environ Technol 2010; 31:825–834 [View Article] [PubMed]
    [Google Scholar]
  18. Dyall-Smith M. The halohandbook: Protocols for Haloarchaeal Genetics; 2009 https://haloarchaea.com/wp-content/uploads/2018/10/Halohandbook_2009_v7.3mds.pdf
  19. Minegishi H, Kamekura M, Itoh T, Echigo A, Usami R et al. Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B’ (rpoB’) gene. Int J Syst Evol Microbiol 2010; 60:2398–2408 [View Article] [PubMed]
    [Google Scholar]
  20. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  21. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/nt. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  22. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  24. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology 1971; 20:406 [View Article]
    [Google Scholar]
  25. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  26. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  27. Giaquinto L, Curmi PMG, Siddiqui KS, Poljak A, DeLong E et al. Structure and function of cold shock proteins in archaea. J Bacteriol 2007; 189:5738–5748 [View Article] [PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  29. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  30. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  31. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  32. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  33. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  34. Sun S, Chen F, Xu Y, Liu J, Chen S. Halorubrum amylolyticum sp. nov., a novel halophilic archaeon isolated from a salt mine. Antonie van Leeuwenhoek 2019; 112:1849–1861 [View Article] [PubMed]
    [Google Scholar]
  35. Feng J, Zhou PJ, Liu SJ. Halorubrum xinjiangense sp. nov., a novel halophile isolated from saline lakes in China. Int J Syst Evol Microbiol 2004; 54:1789–1791 [View Article] [PubMed]
    [Google Scholar]
  36. Dussault HP. An improved technique for staining red halophilic bacteria. J Bacteriol 1955; 70:484–485 [View Article] [PubMed]
    [Google Scholar]
  37. Oren A, Ventosa A, Grant WD. Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 1997; 47:233–238 [View Article]
    [Google Scholar]
  38. Gutiérrez C, González C. Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. Appl Microbiol 1972; 24:516–517 [View Article] [PubMed]
    [Google Scholar]
  39. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge University Press; 2003
    [Google Scholar]
  40. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article] [PubMed]
    [Google Scholar]
  41. Buxton R. Nitrate and Nitrite Reduction Test Protocols American Society for Microbiology; 2011
    [Google Scholar]
  42. Corral P, de la Haba RR, Sánchez-Porro C, Ali Amoozegar M, Thane Papke R et al. Halorubrum halodurans sp. nov., an extremely halophilic archaeon isolated from a hypersaline lake. Int J Syst Evol Microbiol 2016; 66:435–444 [View Article] [PubMed]
    [Google Scholar]
  43. Gruber C, Legat A, Pfaffenhuemer M, Radax C, Weidler G et al. Halobacterium noricense sp. nov., an archaeal isolate from a bore core of an alpine Permian salt deposit, classification of Halobacterium sp. NRC-1 as a strain of H. salinarum and emended description of H. salinarum . Extremophiles 2004; 8:431–439 [View Article]
    [Google Scholar]
  44. Stan-Lotter H, Pfaffenhuemer M, Legat A, Busse H-J, Radax C et al. Halococcus dombrowskii sp. nov., an archaeal isolate from a Permian alpine salt deposit. Int J Syst Evol Microbiol 2002; 52:1807–1814 [View Article] [PubMed]
    [Google Scholar]
  45. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Meth 1984; 2:233–241 [View Article]
    [Google Scholar]
  46. Angelini R, Corral P, Lopalco P, Ventosa A, Corcelli A. Novel ether lipid cardiolipins in archaeal membranes of extreme haloalkaliphiles. Biochim Biophys Acta 2012; 1818:1365–1373 [View Article] [PubMed]
    [Google Scholar]
  47. Corral P, de la Haba RR, Sánchez-Porro C, Amoozegar MA, Papke RT et al. Halorubrum persicum sp. nov., an extremely halophilic archaeon isolated from sediment of a hypersaline lake. Int J Syst Evol Microbiol 2015; 65:1770–1778 [View Article] [PubMed]
    [Google Scholar]
  48. Corcelli A, Lobasso S. Characterization of lipids of halophilic archaea. Methods Microbiol 2006; 35:585–613
    [Google Scholar]
  49. Gibtan A, Song HS, Kim JY, Kim YB, Park N et al. Halorubrum aethiopicum sp. nov., an extremely halophilic archaeon isolated from commercial rock salt. Int J Syst Evol Microbiol 2018; 68:416–422 [View Article] [PubMed]
    [Google Scholar]
  50. Corral P, de la Haba RR, Infante-Domínguez C, Sánchez-Porro C, Amoozegar MA. Halorubrum chaoviator Mancinelli et al. 2009 is a later, heterotypic synonym of Halorubrum ezzemoulense Kharroub et al. 2006. Emended description of Halorubrum ezzemoulense Kharroub et al. 2006. Int J Syst Evol Microbiol 2018; 68:3657–3665 [View Article]
    [Google Scholar]
  51. Pesenti PT, Sikaroodi M, Gillevet PM, Sánchez-Porro C, Ventosa A et al. Halorubrum californiense sp. nov., an extreme archaeal halophile isolated from a crystallizer pond at a solar salt plant in California, USA. Int J Syst Evol Microbiol 2008; 58:2710–2715 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005231
Loading
/content/journal/ijsem/10.1099/ijsem.0.005231
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error