1887

Abstract

Two Gram-reaction-negative strains, designated as B13 and MA2-2, were isolated from two different aromatic hydrocarbon-degrading enrichment cultures and characterized using a polyphasic approach to determine their taxonomic position. The two strains had identical 16S rRNA gene sequences and were most closely related to E9 (97.36 %) and SA-279 (96.33 %). Cells were facultatively aerobic rods and motile with a single polar flagellum. The strains were able to degrade ethylbenzene as sole source of carbon and energy. The assembled genome of strain B13 had a total length of 4.91 Mb and the DNA G+C content was 68.8 mol%. The predominant fatty acids (>5 % of the total) of strains B13 and MA2-2 were C 7/C 6, C 7/C 6 and C. The major ubiquinone of strain B13 was Q10, while the major polar lipids were phosphatidyl--methylethanolamine, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and a phospholipid. Based on phenotypic characteristics and phylogenetic data, it is concluded that strains B13 and MA2-2 are members of the genus and represent a novel species for which the name sp. nov. is proposed. The type strain of the species is strain B13 (=LMG 32346=NCAIM B.02665).

Funding
This study was supported by the:
  • Tempus Public Foundation (Award Stipendium Hungaricum Scholarship Programme)
    • Principle Award Recipient: SinchanBanerjee
  • Hungarian Scientific Research Fund (Award FK 134439)
    • Principle Award Recipient: AndrásTáncsics
  • Ministry of Innovation and Technology of Hungary (Award TKP2020-IKA-12)
    • Principle Award Recipient: NotApplicable
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005229
2022-02-09
2024-04-16
Loading full text...

Full text loading...

References

  1. Dahal RH, Chaudhary DK, Kim J. Pinisolibacter ravus gen. nov., sp. nov., isolated from pine forest soil and allocation of the genera Ancalomicrobium and Pinisolibacter to the family Ancalomicrobiaceae fam. nov., and emendation of the genus Ancalomicrobium Staley 1968. Int J Syst Evol Microbiol 2018; 68:1955–1962 [View Article] [PubMed]
    [Google Scholar]
  2. Staley JT. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 1968; 95:1921–1942 [View Article] [PubMed]
    [Google Scholar]
  3. Felföldi T, Márton Z, Szabó A, Mentes A, Bóka K et al. Siculibacillus lacustris gen. nov., sp. nov., a new rosette-forming bacterium isolated from a freshwater crater lake (Lake St. Ana, Romania). Int J Syst Evol Microbiol 2019; 69:1731–1736 [View Article]
    [Google Scholar]
  4. Carvalho FM, Souza RC, Barcellos FG, Hungria M, Vasconcelos ATR. Genomic and evolutionary comparisons of diazotrophic and pathogenic bacteria of the order Rhizobiales. BMC Microbiol 2010; 10:1–15 [View Article] [PubMed]
    [Google Scholar]
  5. Wiegel J, Wilke D, Baumgarten J, Opitz R, Schlegel HG. Transfer of the Nitrogen-Fixing Hydrogen Bacterium Corynebacterium autotrophicum Baumgarten et al. to Xanthobacter gen. nov. International Journal of Systematic Bacteriology 1978; 28:573–581 [View Article]
    [Google Scholar]
  6. Im WT, Kim SH, Kim MK, Ten LN, Lee ST. Pleomorphomonas koreensis sp. nov., a nitrogen-fixing species in the order Rhizobiales. Int J Syst Evol Microbiol 2006; 56:1663–1666 [View Article] [PubMed]
    [Google Scholar]
  7. Noh HJ, Baek K, Hwang CY, Shin SC, Hong SG et al. Lichenihabitans psoromatis gen. nov., sp. nov., a member of a novel lineage (lichenihabitantaceae fam. nov.) within the order of rhizobiales isolated from antarctic lichen. Int J Syst Evol Microbiol 2019; 69:3837–3842 [View Article]
    [Google Scholar]
  8. Kuykendall LD. Order VI. Rhizobiales ord. nov. In Garrity GM, Brenner DJ, Krieg NR, Staley JT. eds Bergey’s Manual of Systematic Bacteriology New York: Springer; 2005 pp 324–574
    [Google Scholar]
  9. Abbasian F, Palanisami T, Megharaj M, Naidu R, Lockington R et al. Microbial diversity and hydrocarbon degrading gene capacity of a crude oil field soil as determined by metagenomics analysis. Biotechnol Prog 2016; 32:638–648 [View Article] [PubMed]
    [Google Scholar]
  10. Subhash Y, Lee SS. Shinella curvata sp. nov., isolated from hydrocarbon-contaminated desert sands. Int J Syst Evol Microbiol 2016; 66:3929–3934 [View Article] [PubMed]
    [Google Scholar]
  11. Tirandaz H, Dastgheib SMM, Amoozegar MA, Shavandi M, de la Haba RR et al. Pseudorhodoplanes sinuspersici gen. nov., sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2015; 65:4743–4748 [View Article]
    [Google Scholar]
  12. Ryu SH, Chung BS, Le NT, Jang HH, Yun P-Y et al. Devosia geojensis sp. nov., isolated from diesel-contaminated soil in Korea. Int J Syst Evol Microbiol 2008; 58:633–636 [View Article] [PubMed]
    [Google Scholar]
  13. Prince RC, Gramain A, McGenity TJ. Prokaryotic hydrocarbon degraders. In Timmis KN. eds Handbook of Hydrocarbon and Lipid Microbiology Berlin: Springer; 2010 pp 1669–1692
    [Google Scholar]
  14. Saidi-Mehrabad A, He Z, Tamas I, Sharp CE, Brady AL et al. Methanotrophic bacteria in oilsands tailings ponds of northern Alberta. ISME J 2013; 7:908–921 [View Article] [PubMed]
    [Google Scholar]
  15. Rochman FF, Sheremet A, Tamas I, Saidi-Mehrabad A, Kim J-J et al. Benzene and Naphthalene Degrading Bacterial Communities in an Oil Sands Tailings Pond. Front Microbiol 2017; 8:1845 [View Article] [PubMed]
    [Google Scholar]
  16. Táncsics A, Farkas M, Szoboszlay S, Szabó I, Kukolya J et al. One-year monitoring of meta-cleavage dioxygenase gene expression and microbial community dynamics reveals the relevance of subfamily I.2.C extradiol dioxygenases in hypoxic, BTEX-contaminated groundwater. Syst Appl Microbiol 2013; 36:339–350 [View Article] [PubMed]
    [Google Scholar]
  17. Fahy A, McGenity TJ, Timmis KN, Ball AS. Heterogeneous aerobic benzene-degrading communities in oxygen-depleted groundwaters. FEMS Microbiol Ecol 2006; 58:260–270 [View Article] [PubMed]
    [Google Scholar]
  18. Soergel DAW, Dey N, Knight R, Brenner SE. Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. ISME J 2012; 6:1440–1444 [View Article] [PubMed]
    [Google Scholar]
  19. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  23. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  24. Nurk S, Bankevich A, Antipov D, Gurevich A et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In Deng M, Jiang R, Sun F, Zhang X. eds Research in Computational Molecular Biology. RECOMB 2013. Lecture Notes in Computer Science vol 7821 Berlin, Heidelberg: Springer; [View Article]
    [Google Scholar]
  25. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  26. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  27. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  29. Rodriguez-R LM, Gunturu S, Harvey WT, Rosselló-Mora R, Tiedje JM et al. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res 2018; 46:W282–W288 [View Article] [PubMed]
    [Google Scholar]
  30. Vallenet D, Engelen S, Mornico D, Cruveiller S, Fleury L et al. MicroScope: a platform for microbial genome annotation and comparative genomics. Database (Oxford) 2009; 2009:bap021 [View Article] [PubMed]
    [Google Scholar]
  31. Vallenet D, Labarre L, Rouy Z, Barbe V, Bocs S et al. MaGe: a microbial genome annotation system supported by synteny results. Nucleic Acids Res 2006; 34:53–65 [View Article] [PubMed]
    [Google Scholar]
  32. Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 2016; 44:D471–80 [View Article] [PubMed]
    [Google Scholar]
  33. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28:27–30 [View Article] [PubMed]
    [Google Scholar]
  34. Bateman A. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 2019; 47:D506–D515 [View Article] [PubMed]
    [Google Scholar]
  35. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  36. Claus D. A standardized Gram staining procedure. World J Microbiol Biotechnol 1992; 8:451–452 [View Article] [PubMed]
    [Google Scholar]
  37. Szoboszlay S, Atzél B, Kukolya J, Tóth EM, Márialigeti K et al. Chryseobacterium hungaricum sp. nov., isolated from hydrocarbon-contaminated soil. Int J Syst Evol Microbiol 2008; 58:2748–2754 [View Article] [PubMed]
    [Google Scholar]
  38. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 2004 [View Article]
    [Google Scholar]
  39. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt RGE, Murray WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 603–711
    [Google Scholar]
  40. Farkas M, Táncsics A, Kriszt B, Benedek T, Tóth EM et al. Zoogloea oleivorans sp. nov., a floc-forming, petroleum hydrocarbon-degrading bacterium isolated from biofilm. Int J Syst Evol Microbiol 2015; 65:274–279 [View Article] [PubMed]
    [Google Scholar]
  41. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005229
Loading
/content/journal/ijsem/10.1099/ijsem.0.005229
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error