gen. nov., sp. nov. and sp. nov., two novel anaerobic fermentative members of isolated from human faeces No Access

Abstract

Three novel strains of Gram-stain-negative, obligately anaerobic, spore-forming straight or slightly curved rods with pointed ends occurring singly or in pairs were isolated from the faeces of healthy human children. The strains were characterized by mesophilic fermentative metabolism and production of acetate, ethanol and H as the end metabolic products. Strains ASD3451 and ASD5720 were motile, fermented lactose and raffinose, and weakly fermented maltose. Strain ASD4241 was non-motile and did not ferment the carbohydrates listed above but fermented starch. Strains ASD3451 and ASD5720 shared average nucleotide identity higher than 98.5 % with each other, while ASD4241 had only 88.5-89 % identity to them. Based on phylogenetic and chemotaxonomic analyses, we propose gen. nov., sp. nov. (ASD5720=JCM 34353=VKM B-3497) and sp. nov. (ASD4241=JCM 34351=VKM B-3498) within the family .

Funding
This study was supported by the:
  • Ministry of Science and Higher Education of the Russian Federation (Award 075-15-2019-1789)
    • Principle Award Recipient: NotApplicable
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005222
2022-02-08
2024-03-28
Loading full text...

Full text loading...

References

  1. Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA et al. Culturing of “unculturable” human microbiota reveals novel taxa and extensive sporulation. Nature 2016; 533:543–546 [View Article] [PubMed]
    [Google Scholar]
  2. Tidjani Alou M, Naud S, Khelaifia S, Bonnet M, Lagier J-C et al. State of the art in the culture of the human microbiota: new interests and strategies. Clin Microbiol Rev 2020; 34:1–21 [View Article] [PubMed]
    [Google Scholar]
  3. Efimov BA, Chaplin AV, Sokolova SR, Chernaia ZA, Pikina AP et al. Application of culture-based, mass spectrometry and molecular methods to the study of gut microbiota in children. Bull Russ State Med Univ 201954–65 [View Article]
    [Google Scholar]
  4. Egan M, Dempsey E, Ryan CA, Ross RP, Stanton C. The sporobiota of the human gut. Gut Microbes 2021; 13:1–17 [View Article] [PubMed]
    [Google Scholar]
  5. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y et al. Population-level analysis of gut microbiome variation. Science 2016; 352:560–564 [View Article] [PubMed]
    [Google Scholar]
  6. Rainey FA. Family V. Lachnospiraceae fam. nov. In Bergey’s Manual of Systematic Bacteriology, 3rd edn. Springer; 2009 pp 921–968
    [Google Scholar]
  7. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 1994; 44:812–826 [View Article] [PubMed]
    [Google Scholar]
  8. Vacca M, Celano G, Calabrese FM, Portincasa P, Gobbetti M et al. The controversial role of human gut Lachnospiraceae. Microorganisms 2020; 8:E573 [View Article] [PubMed]
    [Google Scholar]
  9. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015; 163:759–771 [View Article] [PubMed]
    [Google Scholar]
  10. Chen P, Zhou J, Wan Y, Liu H, Li Y et al. A Cas12a ortholog with stringent PAM recognition followed by low off-target editing rates for genome editing. Genome Biol 2020; 21:1–13 [View Article] [PubMed]
    [Google Scholar]
  11. Tran MH, Park H, Nobles CL, Karunadharma P, Pan L et al. A more efficient CRISPR-Cas12a variant derived from Lachnospiraceae bacterium MA2020. Mol Ther Nucleic Acids 2021; 24:40–53 [View Article] [PubMed]
    [Google Scholar]
  12. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  13. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  14. Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 2015; 31:3350–3352 [View Article] [PubMed]
    [Google Scholar]
  15. Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D et al. Toward an online repository of Standard Operating Procedures (SOPs) for (meta)genomic annotation. OMICS 2008; 12:137–141 [View Article] [PubMed]
    [Google Scholar]
  16. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  17. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  18. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. DbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018; 46:W95–W101 [View Article] [PubMed]
    [Google Scholar]
  19. Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 2020; 36:2251–2252 [View Article] [PubMed]
    [Google Scholar]
  20. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  21. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  22. Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF et al. Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics 2011; 12:124 [View Article] [PubMed]
    [Google Scholar]
  23. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  24. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  25. Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat Biotechnol 2021; 39:105–114 [View Article] [PubMed]
    [Google Scholar]
  26. Forster SC, Kumar N, Anonye BO, Almeida A, Viciani E et al. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat Biotechnol 2019; 37:186–192 [View Article] [PubMed]
    [Google Scholar]
  27. Hendrickx APA, Budzik JM, Oh SY, Schneewind O. Architects at the bacterial surface - sortases and the assembly of pili with isopeptide bonds. Nat Rev Microbiol 2011; 9:166–176 [View Article] [PubMed]
    [Google Scholar]
  28. Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 2020; 18:67–83 [View Article] [PubMed]
    [Google Scholar]
  29. Jackson DR, Cassilly CD, Plichta DR, Vlamakis H, Liu H et al. Plasmalogen biosynthesis by anaerobic bacteria: identification of a two-gene operon responsible for plasmalogen production in clostridium perfringens. ACS Chem Biol 2021; 16:6–13 [View Article] [PubMed]
    [Google Scholar]
  30. Li E, Hamm CM, Gulati AS, Sartor RB, Chen H et al. Inflammatory bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition. PLoS One 2012; 7:e26284 [View Article] [PubMed]
    [Google Scholar]
  31. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444:1022–1023 [View Article] [PubMed]
    [Google Scholar]
  32. Li M, Wang B, Zhang M, Rantalainen M, Wang S et al. Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA 2008; 105:2117–2122 [View Article] [PubMed]
    [Google Scholar]
  33. Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 2008; 6:e280 [View Article] [PubMed]
    [Google Scholar]
  34. Kim W, Yang S-H, Park M-J, Oh J, Lee J-H et al. Anaerosacchariphilus polymeriproducens gen. nov., sp. nov., an anaerobic bacterium isolated from a salt field. Int J Syst Evol Microbiol 2019; 69:1934–1940 [View Article]
    [Google Scholar]
  35. Patil Y, Junghare M, Pester M, Müller N, Schink B. Anaerobium acetethylicum gen. nov., sp. nov., a strictly anaerobic, gluconate-fermenting bacterium isolated from a methanogenic bioreactor. Int J Syst Evol Microbiol 2015; 65:3289–3296 [View Article] [PubMed]
    [Google Scholar]
  36. Jarzembowska M, Sousa DZ, Beyer F, Zwijnenburg A, Plugge CM et al. Lachnotalea glycerini gen. nov., sp. nov., an anaerobe isolated from a nanofiltration unit treating anoxic groundwater. Int J Syst Evol Microbiol 2016; 66:774–779 [View Article]
    [Google Scholar]
  37. Sakamoto M, Iino T, Ohkuma M. Faecalimonas umbilicata gen. nov., sp. nov., isolated from human faeces, and reclassification of Eubacterium contortum, Eubacterium fissicatena and Clostridium oroticum as Faecalicatena contorta gen. nov., comb. nov., Faecalicatena fissicatena comb. nov. and Faecalicatena orotica comb. nov. Int J Syst Evol Microbiol 2017; 67:1219–1227 [View Article] [PubMed]
    [Google Scholar]
  38. Whitford MF, Yanke LJ, Forster RJ, Teather RM. Lachnobacterium bovis gen. nov., sp. nov., a novel bacterium isolated from the rumen and faeces of cattle. Int J Syst Evol Microbiol 2001; 51:1977–1981 [View Article]
    [Google Scholar]
  39. Bryant MP, Small N. Characteristics of two new genera of anaerobic curved rods isolated from the rumen of cattle. J Bacteriol 1956; 72:22–26 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005222
Loading
/content/journal/ijsem/10.1099/ijsem.0.005222
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed