1887

Abstract

A Gram-stain-negative, facultatively anaerobic, motile by gliding, rod-shaped, oxidase- and catalase-positive bacterial strain, designated BB8, was isolated from the stems of a Korean soybean cultivar ( L. cv. Gwangan). The strain produced a yellow pigment on tryptic soy agar. Growth of strain BB8 occurred at pH 5.0–8.0 (optimum, pH 7.0), at 10–35 °C (optimum, 25–30 °C) and in the presence of 0–1 % (w/v) NaCl (optimum, 0.5%). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain BB8 formed a lineage within the genus and was most closely related to SYP-B1015 (96.9 % 16S rRNA gene sequence similarity) and T13 (96.8%). The complete genome sequence of strain BB8 was 5 513 159 bp long with a G+C content of 34.1 mol%. The major fatty acids (>10 %) of strain BB8 were iso-C (21 %), summed feature 3 (comprising C ω7 and/or C ω6, 20.3%) and iso-C 3-OH (13.7%). The predominant polar lipids were phosphatidylethanolamine and unidentified aminolipids, and the major respiratory quinone was menaquinone-6. Based on these phenotypic, genotypic and chemotaxonomic characteristics, strain BB8 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is BB8 (=KCTC 82167=CCTCC AB 2020070).

Funding
This study was supported by the:
  • Cooperative Research Program for Agriculture Science & Technology Development (Award PJ014052021)
    • Principle Award Recipient: Man-SooChoi
  • Basic Science Research Program through the National Research Foundation of Korea (Award NRF-2020R111A2072308)
    • Principle Award Recipient: JiyoungLee
  • Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (Award 321057051HD020)
    • Principle Award Recipient: JiyoungLee
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005220
2022-02-07
2024-04-24
Loading full text...

Full text loading...

References

  1. Frankland GC, Frankland PF. Ueber einige typische Mikroorganismen im Wasser und im Boden. Zeitschr fur Hygiene 1889; 6:373–400 [View Article]
    [Google Scholar]
  2. Bernardet J-F, Segers P, Vancanneyt M, Berthe F, Kersters K et al. Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 1996; 46:128–148 [View Article]
    [Google Scholar]
  3. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article] [PubMed]
    [Google Scholar]
  4. Dong K, Chen F, Du Y, Wang G. Flavobacterium enshiense sp. nov., isolated from soil, and emended descriptions of the genus Flavobacterium and Flavobacterium cauense, Flavobacterium saliperosum and Flavobacterium suncheonense. Int J Syst Evol Microbiol 2013; 63:886–892 [View Article] [PubMed]
    [Google Scholar]
  5. Kang JY, Chun J, Jahng KY. Flavobacterium aciduliphilum sp. nov., isolated from freshwater, and emended description of the genus Flavobacterium. Int J Syst Evol Microbiol 2013; 63:1633–1638 [View Article] [PubMed]
    [Google Scholar]
  6. Kuo I, Saw J, Kapan DD, Christensen S, Kaneshiro KY et al. Flavobacterium akiainvivens sp. nov., from decaying wood of Wikstroemia oahuensis, Hawai’i, and emended description of the genus Flavobacterium. Int J Syst Evol Microbiol 2013; 63:3280–3286 [View Article] [PubMed]
    [Google Scholar]
  7. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM. Bergey’s Manual of Determinative Bacteriology. , 1st ed. The Williams & Wilkins Co; Baltimore: 1923
  8. Zhu F, Wang S, Zhou P. Flavobacterium xinjiangense sp. nov. and Flavobacterium omnivorum sp. nov., novel psychrophiles from the China No. 1 glacier. Int J Syst Evol Microbiol 2003; 53:853–857 [View Article] [PubMed]
    [Google Scholar]
  9. Cousin S, Päuker O. From a hard-water creek. Int J Syst Evol Microbiol 2007; 57:243–249 [View Article]
    [Google Scholar]
  10. Kämpfer P, Lodders N, Martin K, Avendaño-Herrera R. Flavobacterium chilense sp. nov. and Flavobacterium araucananum sp. nov., isolated from farmed salmonid fish. Int J Syst Evol Microbiol 2012; 62:1402–1408 [View Article] [PubMed]
    [Google Scholar]
  11. Xiao Y-P, Hui W, Lee J-S, Lee KC, Quan Z-X. Flavobacterium dongtanense sp. nov., isolated from the rhizosphere of a wetland reed. Int J Syst Evol Microbiol 2011; 61:343–346 [View Article] [PubMed]
    [Google Scholar]
  12. Weon H-Y, Song M-H, Son J-A, Kim B-Y, Kwon S-W et al. Flavobacterium terrae sp. nov. and Flavobacterium cucumis sp. nov., isolated from greenhouse soil. Int J Syst Evol Microbiol 2007; 57:1594–1598 [View Article] [PubMed]
    [Google Scholar]
  13. Kim J-H, Kim K-Y, Cha C-J. Flavobacterium chungangense sp. nov., isolated from a freshwater lake. Int J Syst Evol Microbiol 2009; 59:1754–1758 [View Article] [PubMed]
    [Google Scholar]
  14. Starliper CE. Bacterial coldwater disease of fishes caused by Flavobacterium psychrophilum. J Adv Res 2011; 2:97–108 [View Article]
    [Google Scholar]
  15. Bernardet J-F, Bowman JP. The genus Flavobacterium. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. eds The Prokaryotes vol 7 New York, NY: Springer; 2006 pp 481–531 [View Article]
    [Google Scholar]
  16. Chaudhary DK, Dahal RH, Kim D-U, Kim J. Flavobacterium sandaracinum sp. nov., Flavobacterium caseinilyticum sp. nov., and Flavobacterium hiemivividum sp. nov., novel psychrophilic bacteria isolated from Arctic soil. Int J Syst Evol Microbiol 2020; 70:2269–2280 [View Article] [PubMed]
    [Google Scholar]
  17. Jiang L, Lim CJ, Kim S-G, Jeong JC, Kim CY et al. Saccharibacillus brassicae sp. nov., an endophytic bacterium isolated from kimchi cabbage (Brassica rapa subsp. pekinensis) seeds. J Microbiol 2020; 58:24–29 [View Article] [PubMed]
    [Google Scholar]
  18. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  19. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Window 95/98/NT. In Nucleic Acids Symposium Series London: Information Retrieval Ltd; 1999 pp c1979–c2000
    [Google Scholar]
  20. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  21. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  22. Wilson KH, Blitchington RB, Greene RC. Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol 1990; 28:1942–1946 [View Article] [PubMed]
    [Google Scholar]
  23. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  24. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  25. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  26. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  27. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  28. Collins MD, Shah HN, Minnikin DE. A note on the separation of natural mixtures of bacterial menaquinones using reverse phase thin-layer chromatography. J Appl Bacteriol 1980; 48:277–282 [View Article] [PubMed]
    [Google Scholar]
  29. Sasser M. MIDI technical note 101: Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  30. Liu Y, Le Han H, Zou Y, Kim SG. Flavobacterium ustbae sp. nov., isolated from rhizosphere soil of Alhagi sparsifolia. Int J Syst Evol Microbiol 2019; 69:3955–3960 [View Article] [PubMed]
    [Google Scholar]
  31. Zhao J-C, Cheng J, Zhang Q, Gao Z-W, Zhang M-Y et al. Flavobacterium artemisiae sp. nov., isolated from the rhizosphere of Artemisia annua L. and emended descriptions of Flavobacterium compostarboris and Flavobacterium procerum. Int J Syst Evol Microbiol 2018; 68:1509–1513 [View Article] [PubMed]
    [Google Scholar]
  32. Sheu SY, Lin YS, Chen WM. Flavobacterium squillarum sp. nov., isolated from a freshwater shrimp culture pond, and emended descriptions of Flavobacterium haoranii, Flavobacterium cauense, Flavobacterium terrae and Flavobacterium aquatile. Int J Syst Evol Microbiol 2013; 63:2239–2247 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005220
Loading
/content/journal/ijsem/10.1099/ijsem.0.005220
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error