1887

Abstract

A nitrogen-fixing, endospore-forming, motile, rod-shaped, facultative aerobic bacterium, designated 81-11, was isolated from rhizosphere soil of a peach tree collected from Handan, Hebei, PR China. From the comparison of 16S rRNA gene sequence, the strain is most closely related to DSM 27463 (96.9 %) and DSM 23593 (96.7 %). The genome size of strain 81-11 was 4.4 Mb, comprising 4879 predicted genes with a DNA G+C content of 50.0 mol%. The average nucleotide identity values of genome sequences between the novel isolate and the type strains of related species DSM 27463 and DSM 23593 were 71.8 and 72.1 %, respectively. The major cellular fatty acids were anteiso-C(47.8 %), iso-C (15.5 %) and iso-C (13.0 %). Menaquinone-7 was the major respiratory quinone. The polar lipids contained phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, aminophospholipid, aminoglycopid, unknown polar lipids and unidentified aminophosphoglycolipid. Based on phylogenetic, genomic and phenotypic characteristics, strain 81-11 was classified as a novel species within the genus , for which the name sp. nov. is proposed. The type strain of is 81-11 (=JCM 34618=CGMCC 1.18907).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 31870004)
    • Principle Award Recipient: MiaoGao
  • National Natural Science Foundation of China (Award 32000048)
    • Principle Award Recipient: QinLi
  • National Key Research and Development Program of China (Award 2019YFA0904700)
    • Principle Award Recipient: San-fengChen
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005216
2022-01-31
2024-04-19
Loading full text...

Full text loading...

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . Antonie van Leeuwenhoek 1993; 64:253–260 [View Article]
    [Google Scholar]
  2. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . Int J Syst Bacteriol 1997; 47:289–298 [View Article]
    [Google Scholar]
  3. Heyndrickx M, Vandemeulebroecke K, Scheldeman P, Kersters K, de Vos P. A polyphasic reassessment of the genus Paenibacillus, reclassification of Bacillus lautus (Nakamura 1984) as Paenibacillus lautus comb. nov. and of Bacillus peoriae (Montefusco et al. 1993) as Paenibacillus peoriae comb. nov., and emended descriptions of P. lautus and of P. peoriae . Int J Syst Bacteriol 1996; 46:988–1003 [View Article]
    [Google Scholar]
  4. Lee JS, Pyun YR, Bae KS. Transfer of Bacillus ehimensis and Bacillus chitinolyticus to the genus Paenibacillus with emended descriptions of Paenibacillus ehimensis comb. nov. and Paenibacillus chitinolyticus comb. nov. Int J Syst Evol Microbiol 2004; 54:929–933 [View Article]
    [Google Scholar]
  5. Hu X-F, Li S-X, Wu J-G, Wang J-F, Fang Q-L et al. Transfer of Bacillus mucilaginosus and Bacillus edaphicus to the genus Paenibacillus as Paenibacillus mucilaginosus comb. nov. and Paenibacillus edaphicus comb. nov. Int J Syst Evol Microbiol 2010; 60:8–14 [View Article]
    [Google Scholar]
  6. von der Weid I, Duarte GF, van Elsas JD, Seldin L. Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int J Syst Evol Microbiol 2002; 52:2147–2153 [View Article]
    [Google Scholar]
  7. Berge O, Guinebretière M-H, Achouak W, Normand P, Heulin T. Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol 2002; 52:607–616 [View Article]
    [Google Scholar]
  8. Ma YC, Zhang J, Chen SF. Paenibacillus zanthoxyli sp. nov., a novel nitrogen-fixing species isolated from the rhizosphere of Zanthoxylum simulans . Int J Syst Evol Microbiol 2007; 57:873–877 [View Article]
    [Google Scholar]
  9. Ma YC, Xia ZQ, Liu XM, Chen SF. Paenibacillus sabinae sp. nov., a nitrogen-fixing species isolated from the rhizosphere soils of shrubs. Int J Syst Evol Microbiol 2007; 57:6–11 [View Article]
    [Google Scholar]
  10. Ma YC, Chen SF. Paenibacillus forsythiae sp. nov., a nitrogen-fixing species isolated from rhizosphere soil of Forsythia mira . Int J Syst Evol Microbiol 2008; 58:319–323 [View Article]
    [Google Scholar]
  11. Hong Y-Y, Ma Y-C, Zhou Y-G, Gao F, Liu H-C et al. Paenibacillus sonchi sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sonchus oleraceus . Int J Syst Evol Microbiol 2009; 59:2656–2661 [View Article]
    [Google Scholar]
  12. Beneduzi A, Costa PB, Parma M, Melo IS, Bodanese-Zanettini MH et al. Paenibacillus riograndensis sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Triticum aestivum . Int J Syst Evol Microbiol 2010; 60:128–133 [View Article]
    [Google Scholar]
  13. Jin HJ, Zhou YG, Liu HC, Chen SF. Paenibacillus jilunlii sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Begonia semperflorens . Int J Syst Evol Microbiol 2011; 61:1350–1355 [View Article]
    [Google Scholar]
  14. Jin HJ, Lv J, Chen SF. Paenibacillus sophorae sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sophora japonica . Int J Syst Evol Microbiol 2011; 61:767–771 [View Article]
    [Google Scholar]
  15. Wang LY, Li J, Li QX, Chen SF. Paenibacillus beijingensis sp. nov., a nitrogen-fixing species isolated from wheat rhizosphere soil. Antonie van Leeuwenhoek 2013; 104:675–683 [View Article]
    [Google Scholar]
  16. Gao M, Xie L, Wang Y, Chen J, Xu J et al. Paenibacillus beijingensis sp. nov., a novel nitrogen-fixing species isolated from jujube garden soil. Antonie van Leeuwenhoek 2012; 102:689–694 [View Article]
    [Google Scholar]
  17. Xie JB, Zhang LH, Zhou YG, Liu HC, Chen SF. Paenibacillus taohuashanense sp. nov., a nitrogen-fixing species isolated from rhizosphere soil of the root of Caragana kansuensis Pojark. Antonie van Leeuwenhoek 2012; 102:735–741 [View Article]
    [Google Scholar]
  18. Liu L, Yuan T, Yang F, Liu Z, Yang M et al. Paenibacillus bryophyllum sp. nov., a nitrogen-fixing species isolated from Bryophyllum pinnatum . Antonie van Leeuwenhoek 2018; 111:2267–2273 [View Article]
    [Google Scholar]
  19. Ambrosini A, Sant’Anna FH, Heinzmann J, de Carvalho Fernandes G, Bach E et al. Paenibacillus helianthi sp. nov., a nitrogen fixing species isolated from the rhizosphere of Helianthus annuus L. Antonie van Leeuwenhoek 2018; 111:2463–2471 [View Article]
    [Google Scholar]
  20. Wang TS, Xie JY, Wang LY, Chen SF. Paenibacillus maysiensis sp. nov., a nitrogen-fixing species isolated from the rhizosphere soil of maize. Curr Microbiol 2018; 75:1267–1273 [View Article]
    [Google Scholar]
  21. Ripa FA, Tong S, Cao W-D, Wang ET, Wang T et al. Paenibacillus rhizophilus sp. nov., a nitrogen-fixing bacterium isolated from the rhizosphere of wheat (Triticum aestivum L.). Int J Syst Evol Microbiol 2019; 69:3689–3695 [View Article]
    [Google Scholar]
  22. Tong S, Wang L-W, Sun Y-C, Khan MS, Gao J-L et al. Paenibacillus apii sp. nov., a novel nifH gene-harbouring species isolated from the rhizospheres of vegetable plants grown in different regions of northern China. Int J Syst Evol Microbiol 2020; 70:5531–5538 [View Article]
    [Google Scholar]
  23. Wang L, Zhang L, Liu Z, Liu Z, Zhao D et al. A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli . PLoS Genet 2013; 9:e1003865 [View Article]
    [Google Scholar]
  24. Ding Y, Wang J, Liu Y, Chen S. Isolation and identification of nitrogen-fixing bacilli from plant rhizospheres in Beijing region. J Appl Microbiol 2005; 99:1271–1281 [View Article]
    [Google Scholar]
  25. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  26. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  27. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
  28. Meier-Kolthoff JP, Göker M, Spröer C, Klenk H-P. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [View Article]
    [Google Scholar]
  29. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article]
    [Google Scholar]
  30. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  31. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  32. Logan NA, Berge O, Bishop AH, Busse H-J, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article]
    [Google Scholar]
  33. Clermont D, Gomard M, Hamon S, Bonne I, Fernandez J-C et al. Paenibacillus faecis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2015; 65:4621–4626 [View Article]
    [Google Scholar]
  34. Benardini JN, Vaishampayan PA, Schwendner P, Swanner E, Fukui Y et al. Paenibacillus phoenicis sp. nov., isolated from the Phoenix Lander assembly facility and a subsurface molybdenum mine. Int J Syst Evol Microbiol 2011; 61:1338–1343 [View Article]
    [Google Scholar]
  35. Collins MD. Isoprenoid quinone analysis in classification and identification. In Goodfellow M, Minnikin DE. eds Chemical Methods in Bacterial Systematics Academic Press; 1985
    [Google Scholar]
  36. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005216
Loading
/content/journal/ijsem/10.1099/ijsem.0.005216
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error