1887

Abstract

Two novel Gram-stain-negative, facultative anaerobic, non-flagellated, rod-shaped bacterial strains, designated MT13 and MT32, were isolated from sediment samples collected from the Mariana Trench at a depth of 8300 m. The two strains grew at −2–30 °C (optimum, 25 °C), at pH 5.5–10.0 (optimum, pH 7.5–8.0) and with 0–15 % (w/v) NaCl (optimum, 3–6 %). They did not reduce nitrate to nitrite nor hydrolyse Tweens 40 and 80, aesculin, casein, starch and DNA. The genomic G+C contents of draft genomes of strain MT13 and MT32 were 52.2 and 54.1 m ol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains MT13 and MT32 were affiliated with the genus , with the highest similarity to the type strain of . The values of average nucleotide identity and DNA–DNA hybridization between strain MT13 and MT32, and between strain MT13 and five closely related type strains of species indicated that strains MT13 and MT32 belonged to the same species, but represented a novel species in the genus of . The major cellular fatty acids of strains MT13 and MT32 were C, summed feature 3(C 7/6) and summed feature 8 (C 7/6). Major polar lipids of strains MT13 and MT32 included phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol. Ubiquinone-9 was the predominant respiratory quinone. Based on data from the present polyphasic study, strains MT13 and MT32 represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MT13 (=MCCC 1K06389=KCTC 82923).

Funding
This study was supported by the:
  • Fundamental Research Funds for the Central Universities (Award 202141006)
    • Principle Award Recipient: PengWang
  • the Program of Shandong for Taishan Scholars (Award tspd20181203)
    • Principle Award Recipient: NotApplicable
  • Major Scientific and Technological Innovation Project (MSTIP) of Shandong Province (Award 2019jzzy010817)
    • Principle Award Recipient: Yu-ZhongZhang
  • the National Key Research and Development Program of China (Award 2018YFC1406700)
    • Principle Award Recipient: Yu-ZhongZhang
  • National Natural Science Foundation of China (Award 31800107)
    • Principle Award Recipient: NotApplicable
  • National Natural Science Foundation of China (Award U1706207)
    • Principle Award Recipient: NotApplicable
  • National Natural Science Foundation of China (Award 31630012)
    • Principle Award Recipient: NotApplicable
  • National Natural Science Foundation of China (Award 91851205)
    • Principle Award Recipient: NotApplicable
  • National Natural Science Foundation of China (Award 42176156)
    • Principle Award Recipient: Hui-HuiFu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005210
2022-01-31
2024-03-29
Loading full text...

Full text loading...

References

  1. Franzmann PD, Wehmeyer U, Stackebrandt E. Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya. Syst Appl Microbiol 1988; 11:16–19 [View Article]
    [Google Scholar]
  2. Arahal DR, Vreeland RH, Litchfield CD, Mormile MR, Tindall BJ et al. Recommended minimal standards for describing new taxa of the family Halomonadaceae. Int J Syst Evol Microbiol 2007; 57:2436–2446 [View Article] [PubMed]
    [Google Scholar]
  3. Vreeland RH, Litchfield CD, Martin EL, Elliot E. Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 1980; 30:485–495 [View Article]
    [Google Scholar]
  4. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article]
    [Google Scholar]
  5. Guan T-W, Xiao J, Zhao K, Luo X-X, Zhang X-P et al. Halomonas xinjiangensis sp. nov., a halotolerant bacterium isolated from a salt lake. Int J Syst Evol Microbiol 2010; 60:349–352 [View Article]
    [Google Scholar]
  6. Guzmán D, Quillaguamán J, Muñoz M, Hatti-Kaul R. Halomonas andesensis sp. nov., a moderate halophile isolated from the saline lake Laguna Colorada in Bolivia. Int J Syst Evol Microbiol 2010; 60:749–753 [View Article]
    [Google Scholar]
  7. Lu H-B, Xing P, Zhai L, Phurbu D, Tang Q et al. Halomonas tibetensis sp. nov., isolated from saline lakes on Tibetan Plateau. J Microbiol 2018; 56:493–499 [View Article]
    [Google Scholar]
  8. Lu H, Xing P, Zhai L, Li H, Wu Q. Halomonas montanilacus sp. nov., isolated from hypersaline Lake Pengyanco on the Tibetan Plateau. Int J Syst Evol Microbiol 2020; 70:2859–2866 [View Article]
    [Google Scholar]
  9. Vahed SZ, Forouhandeh H, Tarhriz V, Chaparzadeh N, Hejazi MA et al. Halomonas tabrizica sp. nov., a novel moderately halophilic bacterium isolated from Urmia Lake in Iran. Antonie van Leeuwenhoek 2018; 111:1139–1148 [View Article]
    [Google Scholar]
  10. Ming H, Ji W-L, Li M, Zhao Z-L, Cheng L-J et al. Halomonas lactosivorans sp. nov., isolated from salt-lake sediment. Int J Syst Evol Microbiol 2020; 70:3504–3512 [View Article]
    [Google Scholar]
  11. Kazemi E, Tarhriz V, Amoozegar MA, Hejazi MS. Halomonas azerbaijanica sp. nov., a halophilic bacterium isolated from Urmia Lake after the 2015 drought. Int J Syst Evol Microbiol 2021; 71:4578 [View Article]
    [Google Scholar]
  12. Lee J-C, Jeon CO, Lim J-M, Lee S-M, Lee J-M et al. Halomonas taeanensis sp. nov., a novel moderately halophilic bacterium isolated from a solar saltern in Korea. Int J Syst Evol Microbiol 2005; 55:2027–2032 [View Article]
    [Google Scholar]
  13. Arenas M, Bañón PI, Copa-Patiño JL, Sánchez-Porro C, Ventosa A et al. Halomonas ilicicola sp. nov., a moderately halophilic bacterium isolated from a saltern. Int J Syst Evol Microbiol 2009; 59:578–582 [View Article]
    [Google Scholar]
  14. Wang C-Y, Wu S-J, Ng C-C, Tzeng W-S, Shyu Y-T. Halomonas beimenensis sp. nov., isolated from an abandoned saltern. Int J Syst Evol Microbiol 2012; 62:3013–3017 [View Article]
    [Google Scholar]
  15. Diéguez AL, Balboa S, Romalde JL. Halomonas borealis sp. nov. and Halomonas niordiana sp. nov., two new species isolated from seawater. Syst Appl Microbiol 2020; 43:126040 [View Article]
    [Google Scholar]
  16. Pandiyan K, Kushwaha P, Bagul SY, Chakdar H, Madhaiyan M et al. Halomonas icarae sp. nov., a moderately halophilic bacterium isolated from beach soil in India. Int J Syst Evol Microbiol 2021; 71:4611 [View Article]
    [Google Scholar]
  17. Long M-R, Zhang D-F, Yang X-Y, Zhang X-M, Zhang Y-G et al. Halomonas nanhaiensis sp. nov., a halophilic bacterium isolated from a sediment sample from the South China Sea. Antonie van Leeuwenhoek 2013; 103:997–1005 [View Article]
    [Google Scholar]
  18. Xu L, Xu X-W, Meng F-X, Huo Y-Y, Oren A et al. Halomonas zincidurans sp. nov., a heavy-metal-tolerant bacterium isolated from the deep-sea environment. Int J Syst Evol Microbiol 2013; 63:4230–4236 [View Article]
    [Google Scholar]
  19. Yan F, Fang J, Cao J, Wei Y, Liu R et al. Halomonas piezotolerans sp. nov., a multiple-stress-tolerant bacterium isolated from a deep-sea sediment sample of the New Britain Trench. Int J Syst Evol Microbiol 2020; 70:2560–2568 [View Article]
    [Google Scholar]
  20. Kaye JZ, Márquez MC, Ventosa A, Baross JA. Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int J Syst Evol Microbiol 2004; 54:499–511 [View Article]
    [Google Scholar]
  21. Yayanos AA, Dietz AS, Van Boxtel R. Obligately barophilic bacterium from the Mariana Trench. Proc Natl Acad Sci U S A 1981; 78:5212–5215 [View Article]
    [Google Scholar]
  22. Abdel-Mageed WM, Al-Wahaibi LH, Lehri B, Al-Saleem MSM, Goodfellow M et al. Biotechnological and ecological potential of Micromonospora provocatoris sp. nov., a gifted strain isolated from the Challenger Deep of the Mariana Trench. Mar Drugs 2021; 19:243 [View Article]
    [Google Scholar]
  23. Zhang R-Y, Huang Y, Qin W-J, Quan Z-X. The complete genome of extracellular protease-producing Deinococcus sp. D7000 isolated from the hadal region of Mariana Trench Challenger Deep. Mar Genomics 2021; 57:100832 [View Article]
    [Google Scholar]
  24. Sui X, He X-Y, Liu N-H, Dang Y-R, Cha Q-Q et al. Marinifaba aquimaris gen. nov., sp. nov., a novel chitin-degrading gammaproteobacterium in the family Alteromonadaceae isolated from seawater of the Mariana Trench. Antonie Van Leeuwenhoek 2021; 114:947–955 [View Article]
    [Google Scholar]
  25. Li Y, Sun X-M, Li J, Song X-Y, Qin Q-L et al. Marinomonas profundi sp. nov., isolated from deep seawater of the mariana trench. Int J Syst Evol Microbiol 2020; 70:5747–5752
    [Google Scholar]
  26. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article]
    [Google Scholar]
  27. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  28. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874
    [Google Scholar]
  29. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425
    [Google Scholar]
  30. Felsenstein J. Evolutionary trees from dna sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  31. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  32. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  33. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  34. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article]
    [Google Scholar]
  35. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göer M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60
    [Google Scholar]
  36. Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF et al. Proteinortho: detection of (co-) orthologs in large-scale analysis. BMC Bioinformatics 2011; 12:124
    [Google Scholar]
  37. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797
    [Google Scholar]
  38. Andrews JM. BSAC working party on susceptibility testing. BSAC standardized disc susceptibility testing method (version 7). J Antimicrob Chemother 2008; 62:256–278 [View Article]
    [Google Scholar]
  39. Amouric A, Liebgott PP, Joseph M, Brochier-Armanet C, Lorquin J. Halomonas olivaria sp. nov., a moderately halophilic bacterium isolated from olive-processing effluents. Int J Syst Evol Microbiol 2014; 64:46–54 [View Article]
    [Google Scholar]
  40. Murray RGE, Doetsch RN, Robinow CF. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 21–41
    [Google Scholar]
  41. Bouchotroch S, Quesada E, Del Moral A, Llamas I, Béjar V. Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 2001; 51:1625–1632 [View Article]
    [Google Scholar]
  42. Smibert RM, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  43. Clarke PH. Hydrogen sulphide production by bacteria. J Gen Microbiol 1953; 8:397–407 [View Article]
    [Google Scholar]
  44. Mata JA, Martínez-Cánovas J, Quesada E, Béjar V. A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 2002; 25:360–375 [View Article]
    [Google Scholar]
  45. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic gram-negative rods. Microbiology 1982; 128:1959–1968 [View Article]
    [Google Scholar]
  46. Sánchez-Porro C, Kaur B, Mann H, Ventosa A. Halomonas titanicae sp. nov., a halophilic bacterium isolated from the RMS Titanic. Int J Syst Evol Microbiol 2010; 60:2768–2774
    [Google Scholar]
  47. Poli A, Esposito E, Orlando P, Lama L, Giordano A et al. Halomonas alkaliantarctica sp. nov., isolated from saline Lake Cape Russell in Antarctica, an alkalophilic moderately halophilic, exopolysaccharide-producing bacterium. Syst Appl Microbiol 2007; 30:31–38 [View Article]
    [Google Scholar]
  48. Quillaguamán J, Hatti-Kaul R, Mattiasson B, Alvarez MT, Delgado O. Halomonas boliviensis sp. nov., an alkalitolerant moderate halophile isolated from soil around a Bolivian hypersaline lake. Int J Syst Evol Microbiol 2004; 54:721–725
    [Google Scholar]
  49. Fendrich C. Halovibrio variabilis gen. nov. sp. nov., Pseudomonas halophila sp. nov. and a new halophilic aerobic coccoid eubacterium from Great Salt Lake, Utah, USA. Syst Appl Microbiol 1988; 11:36–43 [View Article]
    [Google Scholar]
  50. Sorokin DY, Tindall BJ. The status of the genus name Halovibrio Fendrich 1989 and the identity of the strains Pseudomonas halophila DSM 3050 and Halomonas variabilis DSM 3051. Request for an opinion. Int J Syst Evol Microbiol 2006; 56:487–489 [View Article]
    [Google Scholar]
  51. Reddy GSN, Raghavan PUM, Sarita NB, Prakash JSS, Nagesh N et al. Halomonas glaciei sp. nov. isolated from fast ice of Adelie Land, Antarctica. Extremophiles 2003; 7:55–61 [View Article]
    [Google Scholar]
  52. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, 101, MIDI Technical Note Newark, DE: MIDI; 2001
    [Google Scholar]
  53. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  54. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005210
Loading
/content/journal/ijsem/10.1099/ijsem.0.005210
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error