1887

Abstract

An alkaliphilic actinobacterium, designated VN6-2, was isolated from marine sediment collected from Valparaíso Bay, Chile. Strain VN6-2 formed yellowish-white branched substrate mycelium without fragmentation. Aerial mycelium was well developed, forming wavy or spiral spore chains. Strain VN6-2 exhibited a 16S rRNA gene sequence similarity of 93.9 % to CXB832, 93.7 % to 14-Be-013, and 93.7 % to 14-Be-013. Genome sequencing revealed a genome size of 5.9 Mb and an G+C content of 69.3 mol%. Both of the phylogenetic analyses based on 16S rRNA gene sequences and the up-to-date bacterial core gene sequences revealed that strain VN6-2 formed a distinct monophyletic clade within the family . Chemotaxonomic assessment of strain VN6-2 showed that the major fatty acids were iso-C, anteiso-C and 10-methyl-C, and the predominant respiratory quinones were MK-9, MK-9(H) and MK-9(H). Whole-cell hydrolysates contained -diaminopimelic acid as the cell-wall diamino acid, and ribose and xylose as the diagnostic sugars. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, aminophospholipids, glycolipid and phospholipid. Based on the results of this polyphasic study, a novel genus, gen. nov., is proposed within the family and the type species gen. nov., sp. nov. The type strain is VN6-2 (CECT 30026, CCUG 66258). On the basis of the phylogenetic results herein, we also propose that are later heterotypic synonyms of and , respectively, for which emended descriptions are given.

Funding
This study was supported by the:
  • micinn (Award PGC2018-096185-B-I00)
    • Principle Award Recipient: MarthaE. Trujillo
  • comisión nacional de investigación científica y tecnológica (Award PhD 21171494)
    • Principle Award Recipient: FernandaClaverías
  • comisión nacional de investigación científica y tecnológica (Award PIA ACT172128)
    • Principle Award Recipient: BeatrizCamara
  • comisión nacional de investigación científica y tecnológica (Award Fondecyt 1171555)
    • Principle Award Recipient: BeatrizCamara
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005207
2022-01-27
2022-07-06
Loading full text...

Full text loading...

References

  1. Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 1996; 46:1088–1092 [View Article]
    [Google Scholar]
  2. Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K et al. Streptosporangiales ord. nov New York, NY: Springer New York; 2012 [View Article]
    [Google Scholar]
  3. Salam N, Jiao JY, Zhang XT, Li WJ. Update on the classification of higher ranks in the phylum Actinobacteria. Int J Syst Evol Microbiol 2020; 70:1331–1355 [View Article]
    [Google Scholar]
  4. Meyer J. Nocardiopsis, a new genus of the order Actinomycetales. Int J Syst Bacteriol 1976; 26:487–493 [View Article]
    [Google Scholar]
  5. Liu M-J, Zhu W-Y, Li J, Zhao G-Z, Xiong Z et al. Actinorugispora endophytica gen. nov., sp. nov., an actinomycete isolated from Daucus carota. Int J Syst Evol Microbiol 2015; 65:2562–2568 [View Article]
    [Google Scholar]
  6. Guo L, Tuo L, Habden X, Zhang Y, Liu J et al. Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil. Int J Syst Evol Microbiol 2015; 65:206–213 [View Article]
    [Google Scholar]
  7. Tang S-K, Tian X-P, Zhi X-Y, Cai M, Wu J-Y et al. Haloactinospora alba gen. nov., sp. nov., a halophilic filamentous actinomycete of the family Nocardiopsaceae. Int J Syst Evol Microbiol 2008; 58:2075–2080 [View Article]
    [Google Scholar]
  8. Zhang Y-G, Lu X-H, Ding Y-B, Wang S-J, Zhou X-K et al. Lipingzhangella halophila gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 2016; 66:4071–4076 [View Article]
    [Google Scholar]
  9. Liu M-J, Khieu T-N, Gao R, Hozzein WN, Wang H-F et al. Marinactinospora endophytica sp. nov., isolated from a medicinal plant. Antonie van Leeuwenhoek 2015; 107:1577–1582 [View Article] [PubMed]
    [Google Scholar]
  10. Ng ZY, Fang BZ, Li WJ, Tan GYA. Marinitenerispora sediminis gen. nov., sp. nov., a member of the family Nocardiopsaceae isolated from marine sediment. Int J Syst Evol Microbiol 2019; 69:3031–3040 [View Article]
    [Google Scholar]
  11. Kämpfer P, Schäfer J, Lodders N, Martin K. Murinocardiopsis flavida gen. nov., sp. nov., an actinomycete isolated from indoor walls. Int J Syst Evol Microbiol 2010; 60:1729–1734 [View Article]
    [Google Scholar]
  12. Chang X, Liu W, Zhang XH. Salinactinospora qingdaonensis gen. nov., sp. nov., a halophilic actinomycete isolated from a salt pond. Int J Syst Evol Microbiol 2012; 62:954–959 [View Article]
    [Google Scholar]
  13. Chang X, Liu W, Zhang XH. Spinactinospora alkalitolerans gen. nov., sp. nov., an actinomycete isolated from marine sediment. Int J Syst Evol Microbiol 2011; 61:2805–2810 [View Article] [PubMed]
    [Google Scholar]
  14. Cui XL, Mao PH, Zeng M, Li WJ, Zhang LP et al. Streptimonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 2001; 51:357–363 [View Article]
    [Google Scholar]
  15. Zhang Z, Wang Y, Ruan J. Reclassification of Thermomonospora thermomonospora and MmicrotThermomonospora and Microtetraspora. Int J Syst Bacteriol 1998; 48:411–422 [View Article] [PubMed]
    [Google Scholar]
  16. Evtushenko LI, Taran VV, Akimov VN, Kroppenstedt RM, Tiedje JM et al. Nocardiopsis tropica sp. nov., Nocardiopsis trehalosi sp. nov., nom. rev. and Nocardiopsis dassonvillei subsp. albirubida subsp. nov., comb. nov. Int J Syst Evol Microbiol 2000; 50 Pt 1:73–81 [View Article]
    [Google Scholar]
  17. Bennur T, Ravi Kumar A, Zinjarde SS, Javdekar V. Nocardiopsis species: a potential source of bioactive compounds. J Appl Microbiol 2016; 120:1–16 [View Article] [PubMed]
    [Google Scholar]
  18. Meklat A, Bouras N, Riba A, Zitouni A, Mathieu F et al. Streptomonospora algeriensis sp. nov., a halophilic actinomycete isolated from soil in Algeria. Antonie van Leeuwenhoek 2014; 106:287–292 [View Article] [PubMed]
    [Google Scholar]
  19. Cai M, Tang S-K, Chen Y-G, Li Y, Zhang Y-Q et al. Streptomonospora amylolytica sp. nov. and Streptomonospora flavalba sp. nov., two novel halophilic actinomycetes isolated from a salt lake. Int J Syst Evol Microbiol 2009; 59:2471–2475 [View Article] [PubMed]
    [Google Scholar]
  20. Hozzein WN, Goodfellow M. Nocardiopsis arabia sp. nov., a halotolerant actinomycete isolated from a sand-dune soil. Int J Syst Evol Microbiol 2008; 58:2520–2524 [View Article] [PubMed]
    [Google Scholar]
  21. Cai M, Zhi X-Y, Tang S-K, Zhang Y-Q, Xu L-H et al. Streptomonospora halophila sp. nov., a halophilic actinomycete isolated from a hypersaline soil. Int J Syst Evol Microbiol 2008; 58:1556–1560 [View Article] [PubMed]
    [Google Scholar]
  22. Zhao J, Guo L, Liu C, Sun P, Li J et al. Streptomonospora halotolerans sp. nov., an actinomycete isolated from soil. Int J Syst Evol Microbiol 2015; 65:3183–3189 [View Article] [PubMed]
    [Google Scholar]
  23. Tatar D, Guven K, Inan K, Cetin D, Belduz AO et al. Streptomonospora tuzyakensis sp. nov., a halophilic actinomycete isolated from saline soil. Antonie van Leeuwenhoek 2016; 109:35–41 [View Article] [PubMed]
    [Google Scholar]
  24. Yang L-L, Tang S-K, Zhang Y-Q, Zhi X-Y, Wang D et al. Thermobifida halotolerans sp. nov., isolated from a salt mine sample, and emended description of the genus Thermobifida. Int J Syst Evol Microbiol 2008; 58:1821–1825 [View Article] [PubMed]
    [Google Scholar]
  25. Hamedi J, Mohammadipanah F, Pötter G, Spröer C, Schumann P et al. Nocardiopsis arvandica sp. nov., isolated from sandy soil. Int J Syst Evol Microbiol 2011; 61:1189–1194 [View Article] [PubMed]
    [Google Scholar]
  26. Hamedi J, Mohammadipanah F, von Jan M, Pötter G, Schumann P et al. Nocardiopsis sinuspersici sp. nov., isolated from sandy rhizospheric soil. Int J Syst Evol Microbiol 2010; 60:2346–2352 [View Article] [PubMed]
    [Google Scholar]
  27. Chen Y-G, Wang Y-X, Zhang Y-Q, Tang S-K, Liu Z-X et al. Nocardiopsis litoralis sp. nov., a halophilic marine actinomycete isolated from a sea anemone. Int J Syst Evol Microbiol 2009; 59:2708–2713 [View Article] [PubMed]
    [Google Scholar]
  28. Chun J, Bae KS, Moon EY, Jung SO, Lee HK et al. Nocardiopsis kunsanensis sp. nov., a moderately halophilic actinomycete isolated from a saltern. Int J Syst Evol Microbiol 2000; 50:1909–1913 [View Article] [PubMed]
    [Google Scholar]
  29. Aparicio-Rizzo P, Masotti I. Inter-annual variability of oceanographic conditions and phytoplankton in Valparaíso Bay (~33°S), central Chile. RBMO 2019; 54:70 [View Article]
    [Google Scholar]
  30. Palma GS, Rosales GS. Composition, distribution and seasonal abundance of macroplankton in Valparaíso Bay. Investig Mar 1995; 23:49–66 [View Article]
    [Google Scholar]
  31. Pizarro M, Iturriaga R, Silva A, Gallegos S. Unusual bloom of Tetraselmis sp. in the valparaiso bay, chile. Gayana - Bot 2012; 69:369–372 [View Article]
    [Google Scholar]
  32. Claverías FP, Undabarrena A, González M, Seeger M, Cámara B. Culturable diversity and antimicrobial activity of Actinobacteria from marine sediments in Valparaíso bay, Chile. Front Microbiol 2015; 6:737 [View Article]
    [Google Scholar]
  33. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  34. Kester DR, Duedall IW, Connors DN, Pytkowicz RM. Preparation of artificial seawater1. Limnol Oceanogr 1967; 12:176–179 [View Article]
    [Google Scholar]
  35. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  36. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002; 30:3059–3066 [View Article] [PubMed]
    [Google Scholar]
  37. Katoh K, Standley DM. MAFFT: iterative refinement and additional methods. Methods Mol Biol 2014; 1079:131–146 [View Article] [PubMed]
    [Google Scholar]
  38. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article] [PubMed]
    [Google Scholar]
  39. Darriba D, Posada D. JModelTest 2.0 manual. Nat Methods 2012 [View Article]
    [Google Scholar]
  40. Guindon S. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of phyml 3.0. Syst Biol 2010; 59:307–321 [View Article]
    [Google Scholar]
  41. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  42. Zhang D-F, Pan H-Q, He J, Zhang X-M, Zhang Y-G et al. Description of Streptomonospora sediminis sp. nov. and Streptomonospora nanhaiensis sp. nov., and reclassification of Nocardiopsis arabia Hozzein & Goodfellow 2008 as Streptomonospora arabica comb. nov. and emended description of the genus Streptomonospora. Int J Syst Evol Microbiol 2013; 63:4447–4455 [View Article]
    [Google Scholar]
  43. Du H-J, Zhang Y-Q, Liu H-Y, Su J, Wei Y-Z et al. Allonocardiopsis opalescens gen. nov., sp. nov., a new member of the suborder streptosporangineae, from the surface-sterilized fruit of a medicinal plant. Int J Syst Evol Microbiol 2013; 63:900–904 [View Article]
    [Google Scholar]
  44. Joshi N, Fass J. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files version 1.33 https://github.com/najoshi/sickle
  45. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article] [PubMed]
    [Google Scholar]
  46. Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 2017; 27:737–746 [View Article]
    [Google Scholar]
  47. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25:1754–1760 [View Article]
    [Google Scholar]
  48. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly imAn integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 2014; 9:e112963 [View Article]
    [Google Scholar]
  49. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015; 43:6761–6771 [View Article]
    [Google Scholar]
  50. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article]
    [Google Scholar]
  51. Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH et al. A genus definition for bacteria and archaea based on a standard genome relatedness index. mBio 2020; 11:1–20 [View Article] [PubMed]
    [Google Scholar]
  52. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum actinobacteria. Front Microbiol 2018; 9:1–119 [View Article] [PubMed]
    [Google Scholar]
  53. Penn K, Jensen PR. Comparative genomics reveals evidence of marine adaptation in Salinispora species. BMC Genomics 2012; 13:86 [View Article] [PubMed]
    [Google Scholar]
  54. Ian E, Malko DB, Sekurova ON, Bredholt H, Rückert C et al. Genomics of sponge-associated Streptomyces spp. closely related to Streptomyces albus J1074: insights into marine adaptation and secondary metabolite biosynthesis potential. PLoS One 2014; 9:e96719 [View Article]
    [Google Scholar]
  55. Tian X, Zhang Z, Yang T, Chen M, Li J et al. Comparative genomics analysis of streptomyces species reveals their adaptation to the marine environment and their diversity at the genomic level. Front Microbiol 2016; 7:1–16 [View Article] [PubMed]
    [Google Scholar]
  56. Sun W, Liu C, Zhang F, Zhao M, Li Z. Comparative genomics provides insights into the marine adaptation in sponge-derived Kocuriaflava S43. Front Microbiol 2018; 9:1–11 [View Article] [PubMed]
    [Google Scholar]
  57. Almeida EL, Carrillo Rincón AF, Jackson SA, Dobson ADW. Comparative genomics of marine sponge-derived Streptomyces spp. isolates SM17 and SM18 with their closest terrestrial relatives provides novel insights into environmental niche adaptations and secondary metabolite biosynthesis potential. Front Microbiol 2019; 10:1–22 [View Article] [PubMed]
    [Google Scholar]
  58. Rozen Y, Belkin S. Survival of enteric bacteria in seawater: molecular aspects. FEMS Microbiol Rev 2005; 25:513–529 [View Article]
    [Google Scholar]
  59. Swartz TH, Ikewada S, Ishikawa O, Ito M, Krulwich TA. The Mrp system: a giant among monovalent cation/proton antiporters?. Extremophiles 2005; 9:345–354 [View Article] [PubMed]
    [Google Scholar]
  60. Waksman SA. The Actinomycetes II. Classification, Identification and Descriptions of Genera and Species Baltimore: The Williams & Wilkins Co; 1961
    [Google Scholar]
  61. Kawato M. On Streptomyces herbaricolor sp.nov., supplement: a simple technique for microscopical observation. Mem Osaka Univ Lib Arts Educ B 1959114–119
    [Google Scholar]
  62. Cámara B, Herrera C, González M, Couve E, Hofer B et al. From PCBs to highly toxic metabolites by the biphenyl pathway. Environ Microbiol 2004; 6:842–850 [View Article] [PubMed]
    [Google Scholar]
  63. Pascual J, González I, Estévez M, Benito P, Trujillo ME et al. Description of Kibdelosporangium banguiense sp. nov., a novel actinomycete isolated from soil of the forest of Pama, on the plateau of Bangui, Central African Republic. Antonie van Leeuwenhoek 2016; 109:685–695 [View Article] [PubMed]
    [Google Scholar]
  64. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family “oxalobacteraceae” isolated from china. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article]
    [Google Scholar]
  65. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology, 3rd edn. edn pp 330–393 [View Article]
    [Google Scholar]
  66. El-Naggar NEA, El-Ewasy SM. Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H. Sci Rep 2017; 7:1–19 [View Article]
    [Google Scholar]
  67. Ntougias S, Russell NJ. Alkalibacterium olivoapovliticus gen. nov., sp. nov., a new obligately alkaliphilic bacterium isolated from edible-olive wash-waters. Int J Syst Evol Microbiol 2001; 51:1161–1170 [View Article]
    [Google Scholar]
  68. Undabarrena A, Beltrametti F, Claverías FP, González M, Moore ERB et al. Exploring the diversity and antimicrobial potential of marine actinobacteria from the Comau Fjord in Northern Patagonia, Chile. Front Microbiol 2016; 7: [View Article]
    [Google Scholar]
  69. Undabarrena A, Ugalde JA, Seeger M, Cámara B. -Genomic data mining of the marine actinobacteria Streptomyces sp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis. PeerJ 2017; 5:e2912 [View Article]
    [Google Scholar]
  70. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Meth 1984; 2:233–241 [View Article]
    [Google Scholar]
  71. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
  72. Sasser M. Identification by Gas Chromatographic Analysis of Fatty Acid Methyl Esters, MIDI Tech Note 101. 1990 pp 1–6
    [Google Scholar]
  73. Stackebrandt E, Jonas E. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
  74. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  75. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  76. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  77. Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [View Article] [PubMed]
    [Google Scholar]
  78. Parker CT, Tindall BJ, Garrity GM. International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2019; 69:S1–S111 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005207
Loading
/content/journal/ijsem/10.1099/ijsem.0.005207
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error