1887

Abstract

Strain 3F2 was isolated from a soil sample obtained from the surface of Deception Island, Antarctica. The isolate was a Gram-stain-negative, aerobic, non-motile, rod-shaped bacterium, and its colonies were red to pink in colour. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 3F2 belonged to the genus , family and was most closely related to DG5B (97.0% sequence similarity), PB17 (96.9%), DG7A (96.8%) and S1-2-2-6 (96.5%). Growth occurred at 4–20 °C (optimum, 10 °C), up to 1.0 % (w/v) NaCl (optimum, 0%) and pH 6.0–8.0 (optimum, pH 7.0). The chemotaxonomic characteristics of strain 3F2, which had MK-7 as its predominant menaquinone and summed feature 3 (C 7 and/or C 6), iso-C, anteiso-C and C 5 as its major fatty acids, were consistent with classification in the genus . The polar lipid profile of strain 3F2 comprised phosphatidylethanolamine, two unidentified aminolipids, two unidentified aminophospholipids and three unidentified polar lipids. The genome of strain 3F2 was 6.56 Mbp with a G+C content of 61.5 mol%. Average nucleotide identity (ANI) values between 3F2 and the other species of the genus were found to be low (ANIm <87.0%, ANIb <82.0% and OrthoANIu <83.0%). Furthermore, digital DNA–DNA hybridization and average amino acid identity values between strain 3F2 and the closely related species ranged from 20.0 to 26.3% and from 64.0 to 81.1 %, respectively. Based on the results of our phylogenetic, phenotypic, genotypic and chemotaxonomic analyses, it is concluded that strain 3F2 represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is 3F2 (=KCTC 72468=CGMCC 1.13716).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award NSFC, grant number 31070002)
    • Principle Award Recipient: JianliZhang
  • National Key Research and Development Program of China (Award 2016YFC0501302)
    • Principle Award Recipient: JianliZhang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005205
2022-01-27
2024-03-28
Loading full text...

Full text loading...

References

  1. Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B et al. Hymenobacter roseosalivarius gen. nov., sp. nov. from continental antarctic soils and sandstone: bacteria of the cytophaga/flavobacterium/bacteroides line of phylogenetic descent. Syst Appl Microbiol 1998; 21:374–383 [View Article]
    [Google Scholar]
  2. Buczolits S, Denner EBM, Kämpfer P, Busse HJ. Proposal of Hymenobacter norwichensis sp. nov., classification of “Taxeobacter ocellatus”, “Taxeobacter gelupurpurascens” and “Taxeobacter chitinovorans” as Hymenobacter ocellatus sp. nov., Hymenobacter gelipurpurascens sp. nov. and Hymenobacter chitinivorans sp. nov., respectively, and emended description of the genus Hymenobacter Hirsch et al. 1999. Int J Syst Evol Microbiol 2006; 56:2071–2078 [View Article]
    [Google Scholar]
  3. Reddy GS. Phylogenetic Analyses of the Genus Hymenobacter and Description of Siccationidurans gen. nov., and Parahymenobacter gen. nov. J Phylogen Evolution Biol 2013; 01:122 [View Article]
    [Google Scholar]
  4. Han L, Wu S-J, Qin C-Y, Zhu Y-H, Lu Z-Q et al. Hymenobacter qilianensis sp. nov., isolated from a subsurface sandstone sediment in the permafrost region of Qilian Mountains, China and emended description of the genus Hymenobacter . Antonie van Leeuwenhoek 2014; 105:971–978 [View Article] [PubMed]
    [Google Scholar]
  5. Munoz R, Rosselló-Móra R, Amann R. Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov. Syst Appl Microbiol 2016; 39:281–296 [View Article] [PubMed]
    [Google Scholar]
  6. Roldán DM, Kyrpides N, Woyke T, Shapiro N, Whitman WB et al. Hymenobacter caeli sp. nov., an airborne bacterium isolated from King George Island, Antarctica. Int J Syst Evol Microbiol 2021; 71:4838 [View Article] [PubMed]
    [Google Scholar]
  7. Srinivasan S, Lee J-J, Park KR, Park S-H, Jung H-Y et al. Hymenobacter terrae sp. nov., a bacterium isolated from soil. Curr Microbiol 2015; 70:643–650 [View Article]
    [Google Scholar]
  8. Ohn JE, Ten LN, Kim BO, Cho YJ, Jung HY. Hymenobacter rufus sp. nov., a bacterium isolated from soil. Int J Syst Evol Microbiol 2018; 68:2983–2989 [View Article] [PubMed]
    [Google Scholar]
  9. Kim KH, Im WT, Lee ST. Hymenobacter soli sp. nov., isolated from grass soil. Int J Syst Evol Microbiol 2008; 58:941–945 [View Article] [PubMed]
    [Google Scholar]
  10. Kang JY, Chun J, Choi A, Moon SH, Cho J-C et al. Hymenobacter koreensis sp. nov. and Hymenobacter saemangeumensis sp. nov., isolated from estuarine water. Int J Syst Evol Microbiol 2013; 63:4568–4573 [View Article]
    [Google Scholar]
  11. Buczolits S, Busse HJ. Hymenobacter 1-11. In Whitman WB. eds Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Inc; 2015 [View Article]
    [Google Scholar]
  12. Reddy GSN, Garcia-Pichel F. Description of Hymenobacter arizonensis sp. nov. from the southwestern arid lands of the United States of America. Antonie van Leeuwenhoek 2012; 103:321–330 [View Article] [PubMed]
    [Google Scholar]
  13. Zhang D-C, Busse H-J, Liu H-C, Zhou Y-G, Schinner F et al. Hymenobacter psychrophilus sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 2011; 61:859–863 [View Article] [PubMed]
    [Google Scholar]
  14. Chung AP, Lopes A, Nobre MF, Morais PV. Hymenobacter perfusus sp. nov., Hymenobacter flocculans sp. nov. and Hymenobacter metalli sp. nov. three new species isolated from an uranium mine waste water treatment system. Syst Appl Microbiol 2010; 33:436–443 [View Article]
    [Google Scholar]
  15. Ten LN, Li W, Lee S-Y, Kang I-K, Cho Y-J et al. Hymenobacter pomorum sp. nov., isolated from apple orchard soil. Curr Microbiol 2018; 76:117–123 [View Article]
    [Google Scholar]
  16. Kim MC, Kim CM, Kang OC, Zhang Y, Liu Z et al. Hymenobacter rutilus sp. nov., isolated from marine sediment in the Arctic. Int J Syst Evol Microbiol 2017; 67:856–861 [View Article] [PubMed]
    [Google Scholar]
  17. Gu Z, Liu Y, Xu B, Wang N, Jiao N et al. Hymenobacter frigidus sp. nov., isolated from a glacier ice core. Int J Syst Evol Microbiol 2017; 67:4121–4125 [View Article] [PubMed]
    [Google Scholar]
  18. Kang H, Cha I, Kim H, Joh K. Hymenobacter aquatilis sp. nov., isolated from a mesotrophic artificial lake. Int J Syst Evol Microbiol 2018; 68:2036–2041 [View Article] [PubMed]
    [Google Scholar]
  19. Sheu SY, Li YS, Young CC, Chen WM. Hymenobacter pallidus sp. nov., isolated from a freshwater fish culture pond. Int J Syst Evol Microbiol 2017; 67:2915–2921 [View Article] [PubMed]
    [Google Scholar]
  20. Subhash Y, Sasikala C, Ramana CV. Hymenobacter roseus sp. nov., isolated from sand. Int J Syst Evol Microbiol 2014; 64:4129–4133 [View Article] [PubMed]
    [Google Scholar]
  21. Chen H, Han L, Feng Q, Fan Q, Lv J. Hymenobacter bucti sp. nov., isolated from subsurface sandstone sediment. Int J Syst Evol Microbiol 2018; 68:2749–2754 [View Article] [PubMed]
    [Google Scholar]
  22. Zhu HZ, Yang L, Muhadesi JB, Wang BJ, Liu SJ. Hymenobacter cavernae sp. nov., isolated from a karst cave. Int J Syst Evol Microbiol 2017; 67:4829 [View Article] [PubMed]
    [Google Scholar]
  23. Feng GD, Zhang J, Chen W, Wang SN, Zhu H. Hymenobacter fodinae sp. nov. and Hymenobacter metallicola sp. nov., isolated from abandoned lead-zinc mine. Int J Syst Evol Microbiol 2020; 70:4867–4873 [View Article]
    [Google Scholar]
  24. Correa-Llantén DN, Amenábar MJ, Blamey JM. Antioxidant capacity of novel pigments from an Antarctic bacterium. J Microbiol 2012; 50:374–379 [View Article]
    [Google Scholar]
  25. Amenábar MJ, Flores PA, Pugin B, Boehmwald FA, Blamey JM. Archaeal diversity from hydrothermal systems of Deception Island, Antarctica. Polar Biol 2012; 36:373–380 [View Article]
    [Google Scholar]
  26. Mondino LJ, Asao M, Madigan MT. Cold-active halophilic bacteria from the ice-sealed Lake Vida, Antarctica. Arch Microbiol 2009; 191:785–790 [View Article] [PubMed]
    [Google Scholar]
  27. Cabiscol E, Tamarit J, Ros J. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 2000; 3:3–8 [PubMed]
    [Google Scholar]
  28. Dieser M, Greenwood M, Foreman CM. Carotenoid pigmentation in antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. Arctic Antarctic Alpine Res 2018; 42:396–405 [View Article]
    [Google Scholar]
  29. Králová S. Role of fatty acids in cold adaptation of Antarctic psychrophilic Flavobacterium spp. Syst Appl Microbiol 2017; 40:329–333 [View Article] [PubMed]
    [Google Scholar]
  30. Klassen JL, Foght JM. Characterization of Hymenobacter isolates from Victoria Upper Glacier, Antarctica reveals five new species and substantial non-vertical evolution within this genus. Extremophiles 2011; 15:45–57 [View Article] [PubMed]
    [Google Scholar]
  31. Kojima H, Watanabe M, Tokizawa R, Shinohara A, Fukui M. Hymenobacter nivis sp. nov., isolated from red snow in Antarctica. Int J Syst Evol Microbiol 2016; 66:4821–4825 [View Article] [PubMed]
    [Google Scholar]
  32. Sedláček I, Králová S, Kýrová K, Mašlaňová I, Busse H-J et al. Red-pink pigmented hymenobacter coccineus sp. nov., hymenobacter lapidarius sp. nov. and hymenobacter glacialis sp. nov., isolated from rocks in antarctica. Int J Syst Evol Microbiol 2017; 67:1975–1983 [View Article]
    [Google Scholar]
  33. Jiang F, Danzeng W, Zhang Y, Zhang Y, Jiang L et al. Hymenobacter rubripertinctus sp. nov., isolated from Antarctic tundra soil. Int J Syst Evol Microbiol 2018; 68:663–668 [View Article] [PubMed]
    [Google Scholar]
  34. Sedláček I, Pantůček R, Holochová P, Králová S, Staňková E et al. Hymenobacter humicola sp. nov., isolated from soils in Antarctica. Int J Syst Evol Microbiol 2019; 69:2755–2761 [View Article]
    [Google Scholar]
  35. Sedláček I, Pantůček R, Králová S, Mašlaňová I, Holochová P et al. Hymenobacter amundsenii sp. nov. resistant to ultraviolet radiation, isolated from regoliths in Antarctica. Syst Appl Microbiol 2019; 42:284–290 [View Article]
    [Google Scholar]
  36. Xu P, Li WJ, Xu LH, Jiang CL. A microwave-based method for genomic dna extraction from actinomycetes. Microbiology 2003; 30:82–84
    [Google Scholar]
  37. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  38. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  39. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  40. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  41. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  42. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology 1971; 20:406 [View Article]
    [Google Scholar]
  43. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  44. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  45. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article] [PubMed]
    [Google Scholar]
  46. Delcher AL. Glimmer Release Notes Version 3.02 2006
    [Google Scholar]
  47. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  48. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  49. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  50. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  51. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article]
    [Google Scholar]
  52. Stackebrandt E, Goebel BM. Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  53. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article]
    [Google Scholar]
  54. Luo C, Rodriguez-R LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 2014; 42:e73 [View Article] [PubMed]
    [Google Scholar]
  55. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  56. Leifson E. Atlas of bacterial flagellation New York, USA: Academic Press; 1960 [View Article]
    [Google Scholar]
  57. Skerman VBD. A Guide to the Identification of the Genera of Bacteria, 2nd ed. Baltimore: Williams & Wilkins; 1967
    [Google Scholar]
  58. Cappuccino JG, Sherman N. Microbiology: A Laboratory Manual, 9th ed. San Francisco, USA: Benjamin Cummings; 2010
    [Google Scholar]
  59. Ping W, Zhang Y, Pang H, Zhang J, Li D et al. Chitinophaga solisilvae sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2020; 70:4808–4815 [View Article] [PubMed]
    [Google Scholar]
  60. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family “Oxalobacteraceae” isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article]
    [Google Scholar]
  61. Barritt MM. The intensification of the voges–proskauër reaction by the addition of α-naphthol. J Pathol Bacteriol 1936; 42:441–454
    [Google Scholar]
  62. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  63. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article] [PubMed]
    [Google Scholar]
  64. Chhetri G, Kim J, Kim I, Seo T. Lysobacter caseinilyticus, sp. nov., a casein hydrolyzing bacterium isolated from sea water. Antonie van Leeuwenhoek 2019; 112:1349–1356 [View Article]
    [Google Scholar]
  65. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of flavobacterium and cytophaga-like bacteria of the international committee on systematics of prokaryotes. proposed minimal standards for describing new taxa of the family flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article]
    [Google Scholar]
  66. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic Gram-negative rods. Microbiology 1982; 128:1959–1968 [View Article]
    [Google Scholar]
  67. Athalye M, Noble WC, Minnikin DE. Analysis of cellular fatty acids by gas chromatography as a tool in the identification of medically important coryneform bacteria. J Appl Bacteriol 1985; 58:507–512 [View Article]
    [Google Scholar]
  68. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. eds Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp 267–287
    [Google Scholar]
  69. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  70. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–205
    [Google Scholar]
  71. Lee JJ, Kang MS, Joo ES, Jung HY, Kim MK. Hymenobacter sedentarius sp. nov., isolated from a soil. J Microbiol 2016; 54:283–289 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005205
Loading
/content/journal/ijsem/10.1099/ijsem.0.005205
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error