1887

Abstract

Two bacterial strains, designated MJB4 and SJ7, were isolated from water samples collected from Jeongbang Falls on Jeju Island, Republic of Korea. Phylogenetic analysis of 16S rRNA gene sequences indicated that the two strains belonged to the genera and , owing to their high similarities to DSM 29641 (97.5 %) and FA042 (96.3 %), respectively. These values are much lower than the gold standard for bacterial species (98.7 %). The average nucleotide identity values between strains MJB4, SJ7 and the reference strains, DSM 29641, MJ31 and T58 were 77.2, 75.9 and 75.4 %, respectively. Strains MJB4 and SJ7 and the type strains of the species involved in system incidence have average nucleotide identity and average amino acid threshold values of 60.1–82.6 % for the species boundary (95–96 %), which confirms that strains MJB4 and SJ7 represent two new species of genus and , respectively. Based on phylogenetic and phenotypic data, strains MJB4 and SJ7 are considered to represent novel species of the genus and , respectively, for which the names sp. nov. (type strain MJB4=KACC 21724=NBRC 114402) and sp. nov., (type strain SJ7=KACC 21715=NBRC 114486) have been proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005176
2021-12-20
2024-12-07
Loading full text...

Full text loading...

References

  1. Prauser H. Nocardioides, a new genus of the order Actinomycetales . Int J Syst Bacteriol 1976; 26:58–65 [View Article]
    [Google Scholar]
  2. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article] [PubMed]
    [Google Scholar]
  3. Roh SG, Lee C, Kim M-K, Kang H-J, Kim YS et al. Nocardioides euryhalodurans sp. nov., Nocardioides seonyuensis sp. nov. and Nocardioides eburneiflavus sp. nov., isolated from soil. Int J Syst Evol Microbiol 2020; 70:2682–2689 [View Article] [PubMed]
    [Google Scholar]
  4. Wu S, Xia X, Zhou Z, Wang D, Wang G. Nocardioides gansuensis sp. nov., isolated from geopark soil. Int J Syst Evol Microbiol 2019; 69:390–396 [View Article] [PubMed]
    [Google Scholar]
  5. Hwang Y-J, Son J-S, Lee S-Y, He Y, Jo Y et al. Nocardioides sambongensis sp. nov., isolated from Dokdo Islands soil. Int J Syst Evol Microbiol 2020; 70:16–22 [View Article] [PubMed]
    [Google Scholar]
  6. Zhang K, Jiang L-Q, An D-F, Lang L, Li G-D et al. Nocardioides flavescens sp. nov., isolated from soil of Gaoligong Mountain, PR China. Int J Syst Evol Microbiol 2020; 70:5740–5746 [View Article] [PubMed]
    [Google Scholar]
  7. Yoon J-H, Kang S-J, Park S, Kim W, Oh T-K. Nocardioides caeni sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 2009; 59:2794–2797 [View Article] [PubMed]
    [Google Scholar]
  8. Park Y, Liu Q, Maeng S, Choi WJ, Chang Y et al. Nocardioides convexus sp. nov. and Nocardioides anomalus sp. nov., isolated from soil and mineral water. Int J Syst Evol Microbiol 2020; 70:6402–6407 [View Article] [PubMed]
    [Google Scholar]
  9. Liu Y-H, Fang B-Z, Mohamad OAA, Zhang Y-G, Jiao J-Y et al. Nocardioides ferulae sp. nov., isolated from root of an endangered medicinal plant Ferula songorica Pall. ex Spreng. Int J Syst Evol Microbiol 2019; 69:1253–1258 [View Article] [PubMed]
    [Google Scholar]
  10. Lin S-Y, Wen C-Z, Hameed A, Liu Y-C, Hsu Y-H et al. Nocardioides echinoideorum sp. nov., isolated from sea urchins (Tripneustes gratilla). Int J Syst Evol Microbiol 2015; 65:1953–1958 [View Article] [PubMed]
    [Google Scholar]
  11. Yoon J-H, Park Y-H. The genus Nocardioides. In The Prokaryotes New York: Springer; pp 1099–1113 [View Article]
    [Google Scholar]
  12. Yoon B-J, Lee D-H, Kang B-J, Kahng H-Y, Oh Y-S et al. Hyunsoonleella jejuensis gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from seawater. Int J Syst Evol Microbiol 2010; 60:382–386 [View Article] [PubMed]
    [Google Scholar]
  13. Shi M-J, Xie Z-H, Zhang H, Du Z-J. Hyunsoonleella rubra sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2017; 67:386–390 [View Article] [PubMed]
    [Google Scholar]
  14. Gao X, Zhang Z, Dai X, Zhang XH. Hyunsoonleella pacifica sp. nov., isolated from seawater of South Pacific Gyre. Int J Syst Evol Microbiol 2015; 65:1155–1159 [View Article] [PubMed]
    [Google Scholar]
  15. Park SC, Choe HN, Hwang YM, Baik KS, Kim SN et al. Marinivirga aestuarii gen. nov., sp. nov., a member of the family Flavobacteriaceae, isolated from marine environments, and emended descriptions of the genera Hyunsoonleella, Jejuia and Pontirhabdus and the species Hyunsoonleella jejuensis, Jejuia pallidilutea and Pontirhabdus pectinivorans . Int J Syst Evol Microbiol 2013; 63:1524–1531 [View Article] [PubMed]
    [Google Scholar]
  16. Liu B-T, Sun X-K, Wang C, Du Z-J, Chen G-J. Hyunsoonleella flava sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2020; 70:240–245 [View Article] [PubMed]
    [Google Scholar]
  17. Kim I, Chhetri G, Kim J, Kang M, Seo T. Reinekea thalattae sp. nov., a new species of the genus Reinekea isolated from surface seawater in Sehwa Beach. Curr Microbiol 2020; 77:4174–4179 [View Article]
    [Google Scholar]
  18. Kim I, Kim J, Chhetri G, Seo T. Flavobacterium humi sp. nov., a flexirubin-type pigment producing bacterium, isolated from soil. J Microbiol 2019; 57:1079–1085 [View Article] [PubMed]
    [Google Scholar]
  19. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  20. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article] [PubMed]
    [Google Scholar]
  21. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  23. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Biology 1971; 20:406–416 [View Article]
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  25. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  26. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  27. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  28. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001; 29:2607–2618 [View Article] [PubMed]
    [Google Scholar]
  29. Yoon S-H, Ha S, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  30. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:141 [View Article]
    [Google Scholar]
  31. Gillis M, De Ley J, De Cleene M. The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem 1970; 12:143–153 [View Article] [PubMed]
    [Google Scholar]
  32. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article] [PubMed]
    [Google Scholar]
  33. Na S-I, Kim YO, Yoon S-H, Ha S, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article]
    [Google Scholar]
  34. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [View Article] [PubMed]
    [Google Scholar]
  35. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article] [PubMed]
    [Google Scholar]
  36. Kim H, Chhetri G, Seo T. Sphingomonas edaphi sp. nov., a novel species isolated from beach soil in the Republic of Korea. Int J Syst Evol Microbiol 2020; 70:522–529 [View Article] [PubMed]
    [Google Scholar]
  37. Heinz K, Kandler O. Peptidoglycan.types of bacterial cell walls and their taxonomic implications; 1972
  38. Komagata K, Suzuki KI. 4 Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19:161–207
    [Google Scholar]
  39. Kuykendall LD, Roy MA, O’neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  40. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42:457–469 [View Article]
    [Google Scholar]
  41. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354 [View Article]
    [Google Scholar]
  42. Kim I, Chhetri G, Kim J, Kang M, Seo T. Lewinella aurantiaca sp. nov., a carotenoid pigment-producing bacterium isolated from surface seawater. Int J Syst Evol Microbiol 2020; 70:6180–6187 [View Article] [PubMed]
    [Google Scholar]
  43. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980; 8:87–91 [View Article]
    [Google Scholar]
  44. Collins MD, Dorsch M, Stackebrandt E. Transfer of Pimelobacter tumescens to Terrabacter gen. nov. as Terrabacter tumescens comb. nov. and of Pimelobacter jensenii to Nocardioides as Nocardioides jensenii comb. nov. Int J Syst Bacteriol 1989; 39:1–6 [View Article]
    [Google Scholar]
  45. Woo S-G, Srinivasan S, Yang J, Jung Y-A, Kim MK et al. Nocardioides daejeonensis sp. nov., a denitrifying bacterium isolated from sludge in a sewage-disposal plant. Int J Syst Evol Microbiol 2012; 62:1199–1203 [View Article] [PubMed]
    [Google Scholar]
  46. Dastager SG, Lee JC, Pandey A, Kim CJ. Nocardioides mesophilus sp. nov., isolated from soil. Int J Syst Evol Microbiol 2010; 60:2288–2292 [View Article] [PubMed]
    [Google Scholar]
  47. Xie F, Yang Y, Ma H, Quan S, Yue D et al. Nocardioides phosphati sp. nov., an actinomycete isolated from a phosphate mine. Int J Syst Evol Microbiol 2017; 67:1522–1528 [View Article] [PubMed]
    [Google Scholar]
  48. Chen P, Fu Y, Cai Y, Lin Z. Nocardioides guangzhouensis sp. nov., an actinobacterium isolated from soil. Int J Syst Evol Microbiol 2020; 70:112–119 [View Article] [PubMed]
    [Google Scholar]
  49. Kim H, Lee J-B, Oh H-W, Cha H-K, Yang J-H et al. Hyunsoonleella udoensis sp. nov., isolated from a gravel sample from a beach of Udo island, Korea. Antonie van Leeuwenhoek 2015; 108:1009–1014 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005176
Loading
/content/journal/ijsem/10.1099/ijsem.0.005176
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error