1887

Abstract

A Gram-stain-positive, facultatively anaerobic, non-motile, endospore-forming and rod-shaped bacterium, occurring singly or in pairs, designated TB2019, was isolated from environmental monitoring samples of corridor air collected at the Tianjin Institute for Drug Control, Tianjin Province (PR China). The isolate was able to grow at 15–40 °C (optimum growth at 37 °C), pH 6.0–8.0 (pH 7.0) and in the presence of 0–2% (w/v) NaCl (0% NaCl). Comparison of 16S rRNA gene sequences indicated that TB2019 was most closely related to CGMCC 1.11012 (98.63%), Q4-3 (98.19%), DSM 13188 (97.55%), P26E (97.33%) and DSM 15391 (97.19%). The digital DNA–DNA hybridization and the average nucleotide identity values between TB2019 and the five type strains mentioned above ranged from 20.7 to 25.0% and 75.2 to 81.3%, respectively, and the genomic DNA G+C content was 49.52 mol%. The diagnostic cell-wall sugar was ribose, and the diagnostic amino acid was -diaminopimelic acid. The polar lipids of TB2019 included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unidentified aminophospholipids and one unidentified phospholipid. MK-7 was the predominant menaquinone, and anteiso-C (30.6%) was the major fatty acid. Based on the polyphasic taxonomic data, strain TB2019 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is TB2019 (=CICC 25065=JCM 34610).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005158
2021-12-15
2024-04-24
Loading full text...

Full text loading...

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993; 64:253–260 [View Article] [PubMed]
    [Google Scholar]
  2. Ash C, Priest FG, Collins MD. Validation of the publication of new names and new combinations previously effectively published outside the IJSB, List no.51. Int J Syst Bacteriol 1994; 44:852
    [Google Scholar]
  3. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997; 47:289–298 [View Article] [PubMed]
    [Google Scholar]
  4. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  5. Parte AC. LPSN—list of prokaryotic names with standing in nomenclature. Nucl Acids Res 2014; 42:D613–D616 [View Article]
    [Google Scholar]
  6. Akaracharanya A, Lorliam W, Tanasupawat S, Lee KC, Lee JS. Paenibacillus cellulositrophicus sp. nov., a cellulolytic bacterium from Thai soil. Int J Syst Evol Microbiol 2009; 59:2680–2684 [View Article] [PubMed]
    [Google Scholar]
  7. Cha I-T, Cho E-S, Yoo Y, Seok YJ, Park I et al. Paenibacillus arcticus sp. nov., isolated from Arctic soil. Int J Syst Evol Microbiol 2017; 67:4385–4389 [View Article] [PubMed]
    [Google Scholar]
  8. Zhao Z-L, Ming H, Ji W-L, Khieu T-N, Chu-Ky S et al. Paenibacillus esterisolvens sp. nov., isolated from soil. Int J Syst Evol Microbiol 2018; 68:2145–2150 [View Article] [PubMed]
    [Google Scholar]
  9. Cho H, Heo J, Ahn J-H, Weon H-Y, Kim J-S et al. Paenibacillus solanacearum sp. nov., isolated from rhizosphere soil of a tomato plant. Int J Syst Evol Microbiol 2017; 67:5046–5050 [View Article] [PubMed]
    [Google Scholar]
  10. Kämpfer P, Busse H-J, McInroy JA, Hu C-H, Kloepper JW et al. Paenibacillus rhizoplanae sp. nov., isolated from the rhizosphere of Zea mays. Int J Syst Evol Microbiol 2017; 67:1058–1063 [View Article] [PubMed]
    [Google Scholar]
  11. Liu B, Liu G-H, Sengonca C, Schumann P, Lan J-L et al. Paenibacillus solani sp. nov., isolated from potato rhizosphere soil. Int J Syst Evol Microbiol 2016; 66:4486–4491 [View Article] [PubMed]
    [Google Scholar]
  12. Niu L, Tang T, Ma Z, Song L, Zhang K et al. Paenibacillus yunnanensis sp. nov., isolated from Pu’er tea. Int J Syst Evol Microbiol 2015; 65:3806–3811 [View Article] [PubMed]
    [Google Scholar]
  13. Siddiqi MZ, Siddiqi MH, Im WT, Kim Y-J, Yang D-C. Paenibacillus kyungheensis sp. nov., isolated from flowers of magnolia. Int J Syst Evol Microbiol 2015; 65:3959–3964 [View Article] [PubMed]
    [Google Scholar]
  14. Baik KS, Lim CH, Choe HN, Kim EM, Seong CN. Paenibacillus rigui sp. nov., isolated from a freshwater wetland. Int J Syst Evol Microbiol 2011; 61:529–534 [View Article] [PubMed]
    [Google Scholar]
  15. Lee H-W, Roh SW, Yim KJ, Shin N-R, Lee J et al. Paenibacillus marinisediminis sp. nov., a bacterium isolated from marine sediment. J Microbiol 2013; 51:312–317 [View Article] [PubMed]
    [Google Scholar]
  16. Moon JC, Jung YJ, Jung JH, Jung HS, Cheong YR et al. Paenibacillus sacheonensis sp. nov., a xylanolytic and cellulolytic bacterium isolated from tidal flat sediment. Int J Syst Evol Microbiol 2011; 61:2753–2757 [View Article] [PubMed]
    [Google Scholar]
  17. Glaeser SP, Falsen E, Busse HJ, Kämpfer P. Paenibacillus vulneris sp. nov., isolated from a necrotic wound. Int J Syst Evol Microbiol 2013; 63:777–782 [View Article] [PubMed]
    [Google Scholar]
  18. Priest FG. Genus I. Paenibacillus. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W. eds Bergey’s Manual of Systematic Bacteriology, 3 New York: Springer; 2009 pp 269–295
    [Google Scholar]
  19. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp 115–175
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  22. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  23. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  24. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  25. Ardui S, Ameur A, Vermeesch JR, Hestand MS. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res 2018; 46:2159–2168 [View Article] [PubMed]
    [Google Scholar]
  26. Reiner J, Pisani L, Qiao W, Singh R, Yang Y et al. Cytogenomic identification and long-read single molecule real-time (SMRT) sequencing of a Bardet-Biedl Syndrome 9 (BBS9) deletion. NPJ Genom Med 2018; 3:3 [View Article] [PubMed]
    [Google Scholar]
  27. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  29. Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article] [PubMed]
    [Google Scholar]
  30. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  31. Lee I, Kim YO, Park S-C, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  32. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the ad hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  33. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  34. Logan NA, Berge O, Bishop AH, Busse H-J, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article] [PubMed]
    [Google Scholar]
  35. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  36. Xie J, Cheng K, Zhao D, Yang G, Qiao Z et al. Bacillus aquiflavi sp. nov., isolated from yellow water of strongly flavored Chinese baijiu. Int J Syst Evol Microbiol 2020; 70:3406–3412 [View Article] [PubMed]
    [Google Scholar]
  37. Park S-K, Kim M-S, Jung M-J, Nam Y-D, Park E-J et al. Brachybacterium squillarum sp. nov., isolated from salt-fermented seafood. Int J Syst Evol Microbiol 2011; 61:1118–1122 [View Article] [PubMed]
    [Google Scholar]
  38. Holding AJ, Collee JG. Routine biochemical tests. Methods Microbiol 1971; 6A:2–32
    [Google Scholar]
  39. Ambrosini A, Sant’Anna FH, Heinzmann J, de Carvalho Fernandes G, Bach E et al. Paenibacillus helianthi sp. nov., a nitrogen fixing species isolated from the rhizosphere of Helianthus annuus L. Antonie van Leeuwenhoek 2018; 111:2463–2471 [View Article] [PubMed]
    [Google Scholar]
  40. Elo S, Suominen I, Kämpfer P, Juhanoja J, Salkinoja-Salonen M et al. Paenibacillus borealis sp. nov., a nitrogen-fixing species isolated from spruce forest humus in Finland. Int J Syst Evol Microbiol 2001; 51:535–545 [View Article] [PubMed]
    [Google Scholar]
  41. Romano I, Nicolaus B, Lama L, Trabasso D, Caracciolo G et al. Accumulation of osmoprotectants and lipid pattern modulation in response to growth conditions by Halomonas pantelleriense. Syst Appl Microbiol 2001; 24:342–352 [View Article] [PubMed]
    [Google Scholar]
  42. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  43. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  44. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996; 46:234–239 [View Article] [PubMed]
    [Google Scholar]
  45. Ambrosini A, Sant’Anna FH, Heinzmann J, de Carvalho Fernandes G, Bach E et al. Paenibacillus helianthi sp. nov., a nitrogen fixing species isolated from the rhizosphere of Helianthus annuus L. Antonie van Leeuwenhoek 2018; 111:2463–2471 [View Article] [PubMed]
    [Google Scholar]
  46. Buchanan RE, Gibbons NE. Genus Bacillus Cohn 1872. Bergey’s Manual of Determinative Bacteriology, 8th edn. Beijing: Science Press; 1984 pp 729–758
    [Google Scholar]
  47. Whitman WB. Systematic bacteriology. In Bergey’s Manual of Systematic Bacteriology, 2nd. edn vol. 3 New York, NY: Springer; 2009 pp 269–295 [View Article]
    [Google Scholar]
  48. Elo S, Suominen I, Kämpfer P, Juhanoja J, Salkinoja-Salonen M et al. Paenibacillus borealis sp. nov., a nitrogen-fixing species isolated from spruce forest humus in Finland. Int J Syst Evol Microbiol 2001; 51:535–545 [View Article] [PubMed]
    [Google Scholar]
  49. Kong BH, Liu QF, Liu M, Liu Y, Liu L et al. Paenibacillus typhae sp. nov., isolated from roots of Typha angustifolia L. Int J Syst Evol Microbiol 2013; 63:1037–1044 [View Article] [PubMed]
    [Google Scholar]
  50. Zhuang J, Xin D, Zhang Y-Q, Guo J, Zhang J. Paenibacillus albidus sp. nov., isolated from grassland soil. Int J Syst Evol Microbiol 2017; 67:4685–4691 [View Article] [PubMed]
    [Google Scholar]
  51. Berge O, Guinebretière M-H, Achouak W, Normand P, Heulin T. Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol 2002; 52:607–616 [View Article]
    [Google Scholar]
  52. Nakamura LK. Bacillus polymyxa (Prazmowski) Mace 1889 deoxyribonucleic acid relatedness and base composition. Int J Syst Bacteriol 1987; 37:391–397 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005158
Loading
/content/journal/ijsem/10.1099/ijsem.0.005158
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error