1887

Abstract

Two bacterial strains, designated HSP-20 and CCP-1, isolated from freshwater habitats in Taiwan, were characterized by polyphasic taxonomy. Both strains were Gram-stain-negative, aerobic, non-motile and rod-shaped. Cells of strains HSP-20 and CCP-1 formed pink and dark red coloured colonies, respectively. Both strains contained bacteriochlorophyll , and showed optimum growth under anaerobic conditions by photoheterotrophy, but no growth by photoautotrophy. Phylogenetic analyses based on 16S rRNA gene and whole-genome sequences indicated that both strains belonged to the genus . Analysis of 16S rRNA gene sequences showed that strains HSP-20 and CCP-1 shared 98.3 % sequence similarity and were closely related to CYK-10 (96.0 %) and SYSU G03088 (96.0 %), respectively. Both strains shared common chemotaxonomic characteristics including Q-10 as the major isoprenoid quinone, C 7 as the predominant fatty acid, and phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine as the main polar lipids. The DNA G+C content of both strains was 66.2 mol%. The average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization values between these two novel isolates and their closest relatives were below the cut-off values of 95–96, 90 and 70 %, respectively, used for species demarcation. On the basis of phenotypic and genotypic properties and phylogenetic inference, both strains should be classified as novel species within the genus , for which the names sp. nov. (=BCRC 81193=LMG 31334) and sp. nov. (=BCRC 81189=LMG 31335) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005150
2021-12-14
2024-04-24
Loading full text...

Full text loading...

References

  1. Imhoff JF, TRuPER HG, Pfennig N. Rearrangement of the species and genera of the phototrophic “Purple Nonsulfur Bacteria.”. Int J Syst Bacteriol 1984; 34:340–343 [View Article]
    [Google Scholar]
  2. Srinivas TNR, Anil Kumar P, Sasikala C, Ramana CV, Imhoff JF. Rhodobacter vinaykumarii sp. nov., a marine phototrophic alpha proteobacterium from tidal waters, and emended description of the genus Rhodobacter. Int J Syst Evol Microbiol 2007; 57:1984–1987 [View Article] [PubMed]
    [Google Scholar]
  3. Wang D, Liu H, Zheng S, Wang G. Paenirhodobacter enshiensis gen. nov., sp. nov., a non-photosynthetic bacterium isolated from soil, and emended descriptions of the genera Rhodobacter and Haematobacter. Int J Syst Evol Microbiol 2014; 64:551–558 [View Article] [PubMed]
    [Google Scholar]
  4. Suresh G, Lodha TD, Indu B, Sasikala C, Ramana CV. Taxogenomics resolves conflict in the genus Rhodobacter: a two and half decades pending thought to reclassify the genus Rhodobacter. Front Microbiol 2019; 10:2480. [View Article] [PubMed]
    [Google Scholar]
  5. Imhoff JF. Genus Rhodobacter. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. eds Bergey’s Manual of Systematic Bacteriology, 2nd edn. New York: Springer; 2005 pp 161–167
    [Google Scholar]
  6. Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC et al. The family Rhodobacteraceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. eds The Prokaryotes-Alphaproteobacteria and Betaproteobacteria, 4th. edn Berlin: Springer; 2014 pp 439–512
    [Google Scholar]
  7. Eckersley K, Dow CS. Rhodopseudomonas blastica sp.nov.: a Member of the Rhodospirillaceae. Microbiology 1980; 119:465–473 [View Article]
    [Google Scholar]
  8. Hansen TA, Imhoff JF. Rhodobacter veldkampii, a new species of phototrophic purple nonsulfur bacteria. Int J Syst Bacteriol 1985; 35:115–116 [View Article]
    [Google Scholar]
  9. Venkata Ramana V, Sasikala C, Ramana C. Rhodobacter maris sp. nov., a phototrophic alphaproteobacterium isolated from a marine habitat of India. Int J Syst Evol Microbiol 2008; 58:1719–1722 [View Article]
    [Google Scholar]
  10. Arunasri K, Venkata Ramana V, Spröer C, Sasikala C, Ramana CV. Rhodobacter megalophilus sp. nov., a phototroph from the Indian Himalayas possessing a wide temperature range for growth. Int J Syst Evol Microbiol 2008; 58:1792–1796 [View Article] [PubMed]
    [Google Scholar]
  11. Venkata Ramana V, Anil Kumar P, Srinivas TNR, Sasikala C, Ramana CV. Rhodobacter aestuarii sp. nov., a phototrophic alphaproteobacterium isolated from an estuarine environment. Int J Syst Evol Microbiol 2009; 59:1133–1136 [View Article] [PubMed]
    [Google Scholar]
  12. Raj PS, Ramaprasad EVV, Vaseef S, Sasikala C, Ramana CV. Rhodobacter viridis sp. nov., a phototrophic bacterium isolated from mud of a stream. Int J Syst Evol Microbiol 2013; 63:181–186 [View Article] [PubMed]
    [Google Scholar]
  13. Subhash Y, Lee SS. Rhodobacter sediminis sp. nov., isolated from lagoon sediments. Int J Syst Evol Microbiol 2016; 66:2965–2970 [View Article] [PubMed]
    [Google Scholar]
  14. Suresh G, Sailaja B, Ashif A, Dave BP, Sasikala C et al. Description of Rhodobacter azollae sp. nov. and Rhodobacter lacus sp. nov. Int J Syst Evol Microbiol 2017; 67:3289–3295 [View Article] [PubMed]
    [Google Scholar]
  15. Gandham S, Lodha T, Chintalapati S, Chintalapati VR. Rhodobacter alkalitolerans sp. nov., isolated from an alkaline brown pond. Arch Microbiol 2018; 200:1487–1492 [View Article] [PubMed]
    [Google Scholar]
  16. Khan IU, Habib N, Xiao M, Li M-M, Xian W-D et al. Rhodobacter thermarum sp. nov., a novel phototrophic bacterium isolated from sediment of a hot spring. Antonie Van Leeuwenhoek 2019; 112:867–875 [View Article] [PubMed]
    [Google Scholar]
  17. Suresh G, Kumar D, Krishnaiah A, Sasikala C, Ramana C. Rhodobacter sediminicola sp. nov., isolated from a fresh water pond. Int J Syst Evol Microbiol 2020; 70:1294–1299 [View Article] [PubMed]
    [Google Scholar]
  18. Xian W-D, Liu Z-T, Li M-M, Liu L, Ming Y-Z et al. Rhodobacter flagellatus sp. nov., a thermophilic bacterium isolated from a hot spring. Int J Syst Evol Microbiol 2020; 70:1541–1546 [View Article] [PubMed]
    [Google Scholar]
  19. Sheu C, Li Z-H, Sheu S-Y, Yang C-C, Chen W-M. Tabrizicola oligotrophica sp. nov. and Rhodobacter tardus sp. nov., two new species of bacteria belonging to the family Rhodobacteraceae. Int J Syst Evol Microbiol 2020; 70:6266–6283 [View Article] [PubMed]
    [Google Scholar]
  20. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  21. Anzai Y, Kudo Y, Oyaizu H. The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 1997; 47:249–251 [View Article] [PubMed]
    [Google Scholar]
  22. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  23. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. CLUSTAL W and CLUSTAL X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article] [PubMed]
    [Google Scholar]
  24. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  27. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Systematic Zoology 1969; 18:1 [View Article]
    [Google Scholar]
  28. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  29. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983 [View Article]
    [Google Scholar]
  30. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article] [PubMed]
    [Google Scholar]
  31. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  32. Hu Q, Zhang L, Hang P, Zhou X-Y, Jia W-B et al. Xinfangfangia soli gen. nov., sp. nov., isolated from a diuron-polluted soil. Int J Syst Evol Microbiol 2018; 68:2622–2626 [View Article] [PubMed]
    [Google Scholar]
  33. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016; 32:3047–3048 [View Article] [PubMed]
    [Google Scholar]
  34. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  35. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  36. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 2017; 34:2115–2122 [View Article] [PubMed]
    [Google Scholar]
  37. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 2016; 44:D286–D293 [View Article]
    [Google Scholar]
  38. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  39. Meier-Kolthoff JP, Göker M, Spröer C, Klenk H-P. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [View Article] [PubMed]
    [Google Scholar]
  40. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  41. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014; 9:2. [View Article] [PubMed]
    [Google Scholar]
  42. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  43. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  44. Goloboff PA, Farris JS, Nixon KC. TNT, a free program for phylogenetic analysis. Cladistics 2008; 24:774–786 [View Article]
    [Google Scholar]
  45. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  46. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  47. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  48. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  49. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe Magazine 2014; 9:111–118 [View Article]
    [Google Scholar]
  50. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  51. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucl Acids Res 2014; 42:D206–D214 [View Article]
    [Google Scholar]
  52. Blom J, Kreis J, Spänig S, Juhre T, Bertelli C et al. EDGAR 2.0: an enhanced software platform for comparative gene content analyses. Nucleic Acids Res 2016; 44:W22–W28 [View Article] [PubMed]
    [Google Scholar]
  53. Beveridge TJ, Lawrence JR, Murray RGE et al. Sampling and staining for light microscopy. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. eds Methods for General and Molecular Bacteriology, 3rd. edn Washington, DC: American Society for Microbiology; 2007 pp 19–33
    [Google Scholar]
  54. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995; 61:3756–3758 [View Article] [PubMed]
    [Google Scholar]
  55. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. eds Methods for General and Molecular Bacteriology, 3rd. edn Washington, DC: American Society for Microbiology; 2007 pp 309–329
    [Google Scholar]
  56. Pfennig N, Trüper HG. The phototrophic bacteria. In Buchanan RE, Gibbons NE. eds Bergey’s Manual of Systematic Bacteriology, 8th. edn Baltimore: Williams & Wilkins; 1974 pp 24–75
    [Google Scholar]
  57. Biebl H, Allgaier M, Tindall BJ, Koblizek M, Lünsdorf H et al. Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol 2005; 55:1089–1096 [View Article] [PubMed]
    [Google Scholar]
  58. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. eds Methods for General and Molecular Bacteriology, 3rd. edn Washington, DC: American Society for Microbiology; 2007 pp 330–393
    [Google Scholar]
  59. Wen C-M, Tseng C-S, Cheng C-Y, Li Y-K. Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem 2002; 35:213–219 [View Article] [PubMed]
    [Google Scholar]
  60. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50 Pt 5:1861–1868 [View Article] [PubMed]
    [Google Scholar]
  61. Chang S-C, Wang J-T, Vandamme P, Hwang J-H, Chang P-S et al. Chitinimonas taiwanensis gen. nov., sp. nov., a novel chitinolytic bacterium isolated from a freshwater pond for shrimp culture. Syst Appl Microbiol 2004; 27:43–49 [View Article] [PubMed]
    [Google Scholar]
  62. Nokhal TH, Schlegel HG. Taxonomic study of Paracoccus denitrificans. Int J Syst Bacteriol 1983; 33:26–37 [View Article]
    [Google Scholar]
  63. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  64. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. eds Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994 pp 121–161
    [Google Scholar]
  65. Collins MD. Isoprenoid quinones. In Goodfellow M, O’Donnell AG. eds Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994 pp 265–309
    [Google Scholar]
  66. Tarhriz V, Thiel V, Nematzadeh G, Hejazi MA, Imhoff JF et al. Tabrizicola aquatica gen. nov. sp. nov., a novel alphaproteobacterium isolated from Qurugöl Lake nearby Tabriz city, Iran. Antonie van Leeuwenhoek 2013; 104:1205–1215 [View Article] [PubMed]
    [Google Scholar]
  67. Ko D-J, Kim J-S, Park D-S, Lee D-H, Heo S-Y et al. Tabrizicola fusiformis sp. nov., isolated from an industrial wastewater treatment plant. Int J Syst Evol Microbiol 2018; 68:1800–1805 [View Article] [PubMed]
    [Google Scholar]
  68. Liu Z-X, Dorji P, Liu H-C, Li A-H, Zhou Y-G. Tabrizicola sediminis sp. nov., one aerobic anoxygenic photoheterotrophic bacteria from sediment of saline lake. Int J Syst Evol Microbiol 2019; 69:2565–2570 [View Article] [PubMed]
    [Google Scholar]
  69. Phurbu D, Wang H, Tang Q, Lu H, Zhu H et al. Tabrizicola alkalilacus sp. nov., isolated from alkaline Lake Dajiaco on the Tibetan Plateau. Int J Syst Evol Microbiol 2019; 69:3420–3425 [View Article] [PubMed]
    [Google Scholar]
  70. Han JE, Kang W, Lee J-Y, Sung H, Hyun D-W et al. Tabrizicola piscis sp. nov., isolated from the intestinal tract of a Korean indigenous freshwater fish, Acheilognathus koreensis. Int J Syst Evol Microbiol 2020; 70:2305–2311 [View Article] [PubMed]
    [Google Scholar]
  71. Park C-Y, Chun S-J, Jin C, Le VV, Cui Y et al. Tabrizicola algicola sp. nov. isolated from culture of microalga Ettlia sp. Int J Syst Evol Microbiol 2020; 70:6133–6141 [View Article] [PubMed]
    [Google Scholar]
  72. Helsel LO, Hollis D, Steigerwalt AG, Morey RE, Jordan J et al. Identification of “Haematobacter,” a new genus of aerobic Gram-negative rods isolated from clinical specimens, and reclassification of Rhodobacter massiliensis as “Haematobacter massiliensis comb. nov.”. J Clin Microbiol 2007; 45:1238–1243 [View Article] [PubMed]
    [Google Scholar]
  73. Greub G, Raoult D. Rhodobacter massiliensis sp. nov., a new amoebae-resistant species isolated from the nose of a patient. Res Microbiol 2003; 154:631–635 [View Article] [PubMed]
    [Google Scholar]
  74. Kämpfer P, Busse HJ, McInroy JA, Criscuolo A, Clermont D. Xinfangfangia humi sp. nov., isolated from soil amended with humic acid. Int J Syst Evol Microbiol 2019; 69:2070–2075
    [Google Scholar]
  75. Chen WM, Cho NT, Huang WC, Young CC, Sheu SY. Description of Gemmobacter fontiphilus sp. nov., isolated from a freshwater spring, reclassification of Catellibacterium nectariphilum as Gemmobacter nectariphilus comb. nov., Catellibacterium changlense as Gemmobacter changlensis comb. nov., Catellibacterium aquatile as Gemmobacter aquaticus nom. nov., Catellibacterium caeni as Gemmobacter caeni comb. nov., Catellibacterium nanjingense as Gemmobacter nanjingensis comb. nov., and emended description of the genus Gemmobacter and of Gemmobacter aquatilis. Int J Syst Evol Microbiol 2013; 63:470–478 [View Article] [PubMed]
    [Google Scholar]
  76. Kang JY, Kim MJ, Chun J, Son KP, Jahng KY. Gemmobacter straminiformis sp. nov., isolated from an artificial fountain. Int J Syst Evol Microbiol 2017; 67:5019–5025 [View Article] [PubMed]
    [Google Scholar]
  77. Yoo Y, Lee DW, Lee H, Kwon B-O, Khim JS et al. Gemmobacter lutimaris sp. nov., a marine bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2019; 69:1676–1681 [View Article] [PubMed]
    [Google Scholar]
  78. Hameed A, Shahina M, Lin S-Y, Chen W-M, Hsu Y-H et al. Description of Gemmobacter aestuarii sp. nov., isolated from estuarine surface water and reclassification of Cereibacter changlensis as Gemmobacter changlensis Chen et al. 2013. Arch Microbiol 2020; 202:1035–1042 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005150
Loading
/content/journal/ijsem/10.1099/ijsem.0.005150
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error