Skip to content
1887

Abstract

A new strictly anaerobic bacterium, strain DYL19, was enriched and isolated with phosphite as the sole electron donor and CO as a single carbon source and electron acceptor from anaerobic sewage sludge sampled at a sewage treatment plant in Constance, Germany. It is a Gram-positive, spore-forming, slightly curved, rod-shaped bacterium which oxidizes phosphite to phosphate while reducing CO to biomass and small amounts of acetate. Optimal growth is observed at 30 °C, pH 7.2, with a doubling time of 3 days. Beyond phosphite, no further inorganic or organic electron donor can be used, and no other electron acceptor than CO is reduced. Sulphate inhibits growth with phosphite and CO. The G+C content is 45.95 mol%, and dimethylmenaquinone-7 is the only quinone detectable in the cells. On the basis of 16S rRNA gene sequence analysis and other chemotaxonomic properties, strain DYL19 is described as the type strain of a new genus and species, gen. nov., sp. nov.

Funding
This study was supported by the:
  • Deutscher Akademischer Austauschdienst (Award 01092017)
    • Principle Award Recipient: ZhuqingMao
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005142
2021-12-08
2025-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/12/ijsem005142.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005142&mimeType=html&fmt=ahah

References

  1. Pasek MA, Sampson JM, Atlas Z. Redox chemistry in the phosphorus biogeochemical cycle. Proc Natl Acad Sci USA 2014; 111:15468–15473 [View Article] [PubMed]
    [Google Scholar]
  2. Figueroa IA, Barnum TP, Somasekhar PY, Carlström CI, Engelbrektson AL et al. Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2 fixation pathway. Proc Natl Acad Sci USA 2018; 115:E92–E101 [View Article] [PubMed]
    [Google Scholar]
  3. Schink B. Biological cycling of phosphorus. In Sigel A, Sigel H, Sigel RKO. eds Ions in Biological Systems New York, USA: Marcel Dekker Inc; 2005 pp 131–151
    [Google Scholar]
  4. Lovatt CJ, Mikkelsen RL. Phosphite fertilizers: What are they? Can you use them? What can they do. Better crops 2016; 4:611–613
    [Google Scholar]
  5. Rossall S, Qing C, Paneri M, Bennett M, Swarup R. A ‘growing’ role for phosphites in promoting plant growth and development. Acta Hortic 201661–68 [View Article]
    [Google Scholar]
  6. Pasek MA, Harnmeijer JP, Buick R, Gull M, Atlas Z. Evidence for reactive reduced phosphorus species in the early Archean ocean. Proc Natl Acad Sci U S A 2013; 110:10089–10094 [View Article] [PubMed]
    [Google Scholar]
  7. Metcalf WW, Wolfe RS. Molecular genetic analysis of phosphite and hypophosphite oxidation by Pseudomonas stutzeri WM88. J Bacteriol 1998; 180:5547–5558 [View Article] [PubMed]
    [Google Scholar]
  8. Schink B, Friedrich MW. Phosphite oxidation by sulphate reduction. Nature 2000; 406:37 [View Article] [PubMed]
    [Google Scholar]
  9. Schink B, Thiemann V, Laue H, Friedrich MW. Desulfotignum phosphitoxidans sp. nov., a new marine sulfate reducer that oxidizes phosphite to phosphate. Arch Microbiol 2002; 177:381–391 [View Article] [PubMed]
    [Google Scholar]
  10. Figueroa IA, Coates JD. Microbial phosphite oxidation and its potential role in the global phosphorus and carbon cycles. Adv Appl Microbiol 2017; 98:93–117 [View Article] [PubMed]
    [Google Scholar]
  11. Widdel F, Bak F. Gram negative mesophilic sulfate reducing bacteria. In Balows H, Trüper HG, Dworkin M, Harder W, Schleifer KH. eds The Prokaryotes Vol IV New York: Springer; 1992 pp 3352–3378
    [Google Scholar]
  12. Widdel F, Kohring GW, Mayer F. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. Arch Microbiol 1983; 134:286–294 [View Article]
    [Google Scholar]
  13. Tschech A, Pfennig N. Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol 1984; 137:163–167 [View Article]
    [Google Scholar]
  14. Pfennig N. Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin b12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 1978; 28:283–288 [View Article]
    [Google Scholar]
  15. Pfennig N, Wagener S. An improved method of preparing wet mounts for photomicrographs of microorganisms. J Microbiol Methods 1986; 4:303–306 [View Article]
    [Google Scholar]
  16. Gregersen T. Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 1978; 5:123–127 [View Article]
    [Google Scholar]
  17. Cline JD. Spectrophotometric determination of hydrogen sulfide in natural waters1. Limnol Oceanogr 1969; 14:454–458 [View Article]
    [Google Scholar]
  18. Müller N, Scherag FD, Pester M, Schink B. Bacillus stamsii sp. nov., a facultatively anaerobic sugar degrader that is numerically dominant in freshwater lake sediment. Syst Appl Microbiol 2015; 38:379–389 [View Article] [PubMed]
    [Google Scholar]
  19. Patil Y, Junghare M, Müller N. Fermentation of glycerol by Anaerobium acetethylicum and its potential use in biofuel production. Microb Biotechnol 2017; 10:203–217 [View Article] [PubMed]
    [Google Scholar]
  20. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–IN1 [View Article]
    [Google Scholar]
  21. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  22. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  23. Kuykendall LD, Roy MA, O’neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  24. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586 [View Article] [PubMed]
    [Google Scholar]
  25. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  26. Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In Deng M, Jiang R, Sun F, Zhang X. eds Research in Computational Molecular Biology. RECOMB 2013. Lecture Notes in Computer Science vol. 7821 Berlin, Heidelberg: Springer; 2013
    [Google Scholar]
  27. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article] [PubMed]
    [Google Scholar]
  28. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V et al. Twelve years of SAMtools and BCFtools. GigaScience 2021; 10:giab008 [View Article]
    [Google Scholar]
  29. Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Sundaramurthi JC et al. Genomes OnLine Database (GOLD) v.8: overview and updates. Nucleic Acids Res 2021; 49:D723–D733 [View Article] [PubMed]
    [Google Scholar]
  30. Turner S, Pryer KM, Miao VPW, Palmer JD. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryotic Microbiology 1999; 46:327–338 [View Article]
    [Google Scholar]
  31. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  32. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic Local Alignment Search Tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  33. Zavarzina DG, Sokolova TG, Tourova TP, Chernyh NA, Kostrikina NA et al. Thermincola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction. Extremophiles 2007; 11:1–7 [View Article] [PubMed]
    [Google Scholar]
  34. Hamilton-Brehm SD, Stewart LE, Zavarin M, Caldwell M, Lawson PA et al. Thermoanaerosceptrum fracticalcis gen. nov. sp. nov., a novel fumarate-fermenting microorganism from a deep fractured carbonate aquifer of the US Great Basin. Front Microbiol 2019; 10:2224 [View Article] [PubMed]
    [Google Scholar]
  35. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH, Hancock J. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019; 36:1925–1927 [View Article]
    [Google Scholar]
  36. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  37. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  38. Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 2008; 57:758–771 [View Article] [PubMed]
    [Google Scholar]
  39. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article] [PubMed]
    [Google Scholar]
  40. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005142
Loading
/content/journal/ijsem/10.1099/ijsem.0.005142
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error