1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005141
2021-11-24
2021-12-03
Loading full text...

Full text loading...

References

  1. Nagy LG, Ohm RA, Kovács GM, Floudas D, Riley R et al. Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts. Nat Commun 2014; 5:1–8 [View Article]
    [Google Scholar]
  2. Naranjo-Ortiz MA, Gabaldón T. Fungal evolution: Diversity, taxonomy and phylogeny of the Fungi. Biol Rev Camb Philos Soc 2019; 94:2101–2137 [View Article] [PubMed]
    [Google Scholar]
  3. Aleklett K, Boddy L. Fungal behaviour: a new frontier in behavioural ecology. Trends Ecol Evol 2021; 36:787–796 [View Article] [PubMed]
    [Google Scholar]
  4. Kurtzman CP. Definition, classification and nomenclature of the yeasts. In Kurtman CP, Fell JW, Boekhout T. eds The Yeasts Amsterdam: Elsevier Science Publishers; 2011 pp 3–5
    [Google Scholar]
  5. Chen Y, Li F, Mao J, Chen Y, Nielsen J. Yeast optimizes metal utilization based on metabolic network and enzyme kinetics. Proc Natl Acad Sci USA 2021; 118:e2020154118 [View Article]
    [Google Scholar]
  6. Shen X-X, Steenwyk JL, LaBella AL, Opulente DA, Zhou X et al. Genome-scale phylogeny and contrasting modes of genome evolution in the fungal phylum Ascomycota. Sci Adv 2020; 6:eabd0079 [View Article] [PubMed]
    [Google Scholar]
  7. Skinner CE. The yeast-like fungi: Candida and Brettanomyces. Bacteriol Rev 1947; 11:227–274 [View Article] [PubMed]
    [Google Scholar]
  8. Haelewaters D, Peterson RA, Nevalainen H. Inopinatum lactosum gen. & comb. nov., the first yeast-like fungus in Leotiomycetes. Int J Syst Evol 2021; 71:004862
    [Google Scholar]
  9. Malloch D, Cain RF. Four new genera of cleistothecial Ascomycetes with hyaline ascospores. Can J Bot 1971; 49:847–854 [View Article]
    [Google Scholar]
  10. de Hoog GS, Smith MT. Hyphozyma, a new genus of yeast-like Hyphomycetes. Antonie van Leeuwenhoek 1981; 47:339–352 [View Article] [PubMed]
    [Google Scholar]
  11. Sazanova KV, Senik SV, Kirtsideli IY, Shavarda AL. Metabolomic profiling and lipid composition of Arctic and Antarctic strains of micromycetes Geomyces pannorum and Thelebolus microsporus grown at different temperatures. Microbiology 2019; 88:282–291 [View Article]
    [Google Scholar]
  12. de Hoog GS, Gottlich E, Platas G, Genilloud O, Leotta G et al. Evolution, taxonomy and ecology of the genus Thelebolus in Antarctica. Stud Mycol 2004; 51:33–76
    [Google Scholar]
  13. Kochkina GA, Ozerskaya SM, Ivanushkina NE, Chigineva NI, Vasilenko OV et al. Fungal diversity in the Antarctic active layer. Microbiology 2014; 83:94–101 [View Article]
    [Google Scholar]
  14. Ferreira EMS, de Sousa FMP, Rosa LH, Pimenta RS. Taxonomy and richness of yeasts associated with angiosperms, bryophytes, and meltwater biofilms collected in the Antarctic Peninsula. Extremophiles 2019; 23:151–159 [View Article] [PubMed]
    [Google Scholar]
  15. Vaz ABM, Rosa LH, Vieira MLA, de Garcia V, Brandão LR et al. The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz J Microbiol 2011; 42:937–947 [View Article] [PubMed]
    [Google Scholar]
  16. Carrasco M, Rozas JM, Barahona S, Alcaíno J, Cifuentes V et al. Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region. BMC Microbiol 2012; 12:1–9 [View Article] [PubMed]
    [Google Scholar]
  17. Tepeeva AN, Glushakova AM, Kachalkin AV. Yeast communities of the Moscow city soils. Microbiology 2018; 87:407–415 [View Article]
    [Google Scholar]
  18. Raudabaugh DB, Miller AN. Morphogenetic effect of L-cysteine on Pseudogymnoascus destructans and related species. Mycosphere 2014; 5:737–746 [View Article]
    [Google Scholar]
  19. Hosoya T, Otani Y. Gelatinipulvinella astraeicola gen. et sp. nov., a fungicolous discomycete and its anamorph. Mycologia 2018; 87:689–696 [View Article]
    [Google Scholar]
  20. Nasr S, Bien S, Soudi MR, Alimadadi N, Shahzadeh Fazeli SA et al. Novel Collophorina and Coniochaeta species from Euphorbia polycaulis, an endemic plant in Iran. Mycol Progress 2018; 17:755–771 [View Article]
    [Google Scholar]
  21. Bien S, Kraus C, Damm U. Novel collophorina-like genera and species from Prunus trees and vineyards in Germany. Persoonia 2020; 45:46–67 [View Article]
    [Google Scholar]
  22. Groves JW. The genus Tympanis. Can J Bot 1952; 30:571–651 [View Article]
    [Google Scholar]
  23. Groves JW. The genus Pragmopora. Can J Bot 1967; 45:169–181 [View Article]
    [Google Scholar]
  24. De Hoog GS, McGinnis MR. Ascomycetous black yeasts. Stud Mycol 1987; 30:187–199
    [Google Scholar]
  25. Boekhout T, Roeijmans H, Spaay F. A new pleomorphic ascomycete, Calyptrozyma arxii gen. et sp. nov., isolated from the human lower oesophagus. Mycological Research 1995; 99:1239–1246 [View Article]
    [Google Scholar]
  26. de Menezes GCA, Godinho VM, Porto BA, Gonçalves VN, Rosa LH. Antarctomyces pellizariae sp. nov., a new, endemic, blue, snow resident psychrophilic ascomycete fungus from Antarctica. Extremophiles 2017; 21:259–269 [View Article] [PubMed]
    [Google Scholar]
  27. de Menezes GCA, Porto BA, Amorim SS, Zani CL, de Almeida Alves TM et al. Fungi in glacial ice of Antarctica: diversity, distribution and bioprospecting of bioactive compounds. Extremophiles 2020; 24:367–376 [View Article] [PubMed]
    [Google Scholar]
  28. Gonçalves VN, Vaz ABM, Rosa CA, Rosa LH. Diversity and distribution of fungal communities in lakes of Antarctica. FEMS Microbiol Ecol 2012; 82:459–471 [View Article] [PubMed]
    [Google Scholar]
  29. Ogaki MB, Teixeira DR, Vieira R, Lírio JM, Felizardo JPS et al. Diversity and bioprospecting of cultivable fungal assemblages in sediments of lakes in the Antarctic Peninsula. Fungal Biol 2020; 124:601–611 [View Article] [PubMed]
    [Google Scholar]
  30. Wentzel LCP, Inforsato FJ, Montoya QV, Rossin BG, Nascimento NR et al. Fungi from admiralty bay (King George Island, Antarctica) soils and marine sediments. Microb Ecol 2019; 77:12–24 [View Article] [PubMed]
    [Google Scholar]
  31. Santiago IF, Soares MA, Rosa CA, Rosa LH. Lichensphere: a protected natural microhabitat of the non-lichenised fungal communities living in extreme environments of Antarctica. Extremophiles 2015; 19:1087–1097 [View Article] [PubMed]
    [Google Scholar]
  32. Buzzini P, Turchetti B, Yurkov A. Extremophilic yeasts: the toughest yeasts around?. Yeast 2018; 35:487–497 [View Article] [PubMed]
    [Google Scholar]
  33. Bastidas RJ, Heitman J. Trimorphic stepping stones pave the way to fungal virulence. Proc Natl Acad Sci U S A 2009; 106:351–352 [View Article] [PubMed]
    [Google Scholar]
  34. Baral HO, Weber E, Marson G, Quijada L. A new connection between wood saprobism and beetle endosymbiosis: the rarely reported saprobic discomycete Tromeropsis is congeneric with the symbiotic yeast Symbiotaphrina (Symbiotaphrinales, Xylonomycetes) and two asexual morphs misplaced in Hyphozyma. Mycol Progress 2017; 17:215–254 [View Article]
    [Google Scholar]
  35. Becher PG, Hagman A, Verschut V, Chakraborty A, Rozpędowska E et al. Chemical signaling and insect attraction is a conserved trait in yeasts. Ecol Evol 2018; 8:2962–2974 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005141
Loading

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error