1887

Abstract

A Gram-stain-negative, rod-shaped, motile via polar flagellum, facultatively aerobic, light-yellow, bacterium (designated 188UL20-2) was isolated from a mussel sample of collected on Ulleung Island, Ulleung-gun, Gyeongsangbuk-do, Republic of Korea. On the basis of 16S rRNA gene sequencing results, strain 188UL20-2 clustered with species of the genus and appeared closely related to DSM 23086 (96.59%), DSM 26147 (96.57%), DSM 14398 (96.37%) and DSM 17657 (95.97%). The average nucleotide identity and digital DNA–DNA hybridization values between strain 188UL20-2 and its closest related strain were 71.3 and 16.4%, indicating that 188UL20-2 represents a novel species of the genus . Growth occurred at 18–37 °C on MA medium in the presence of 1–4% NaCl (w/v) and at pH 5.0–10.0. The DNA G+C content of the genomic DNA was 45.4 mol%, and ubiquinone-8 (Q-8) was the major respiratory quinone. The major cellular fatty acids (>5%) were C 6 and/or C 7 (summed feature 3), C 7 and/or C 6 (summed feature 8), C, C iso, C, C iso and C. The polar lipids consisted of phosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids, unidentified aminophospholipid, unidentified glycolipid and seven unidentified lipids. Physiological and biochemical characteristics indicated that strain 188UL20-2 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 188UL20-2 (=KACC 22258=LMG 32202).

Funding
This study was supported by the:
  • National Research Foundation of Korea (Award 2021R1I1A3046479)
    • Principle Award Recipient: Jin-SookPark
  • National Marine Biodiversity Institute of Korea (Award 2021M01100)
    • Principle Award Recipient: Jin-SookPark
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005136
2021-12-07
2024-04-25
Loading full text...

Full text loading...

References

  1. Ansorge R, Romano S, Sayavedra L, Porras MÁG, Kupczok A et al. Functional diversity enables multiple symbiont strains to coexist in deep-sea mussels. Nat Microbiol 2019; 4:2487–2497 [View Article] [PubMed]
    [Google Scholar]
  2. Destoumieux-Garzón D, Canesi L, Oyanedel D, Travers M-A, Charrière GM et al. Vibrio-bivalve interactions in health and disease. Environ Microbiol 2020; 22:4323–4341 [View Article] [PubMed]
    [Google Scholar]
  3. Baumann P, Schubert RHW. Genus II. Vibrionaceae Veron 1965, 5245AL. In Krieg NR, Holt JG. eds Bergey’s Manual of Systematic Bacteriology vol. 1 Baltimore: Williams & Wilkins; 1984 pp 516–517
    [Google Scholar]
  4. Thompson FL, Iida T, Swings J. Biodiversity of vibrios. Microbiol Mol Biol Rev 2004; 68: 403–431 [View Article] [PubMed]
    [Google Scholar]
  5. Gomez-Gil B, Thompson CC, Matsumura Y, Sawabe T, Iida T et al. The family Vibrionaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. eds The Prokaryotes, 4th. edn vol. 9 Springer-Verlag: Berlin Heidelberg; 2014
    [Google Scholar]
  6. Buck JD. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [View Article] [PubMed]
    [Google Scholar]
  7. Weon H-Y, Kim B-Y, Joa J-H, Son J-A, Song M-H et al. Methylobacterium iners sp. nov. and Methylobacterium aerolatum sp. nov., isolated from air samples in Korea. Int J Syst Evol Microbiol 2008; 58:93–96 [View Article] [PubMed]
    [Google Scholar]
  8. Atlas RM. Handbook of Microbiological Media Boca Raton, Florida, USA: CRC Press; 1993
    [Google Scholar]
  9. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria Cambridge: Cambridge University Press; 1974
    [Google Scholar]
  10. Cappuccino JG, Sherman N. Microbiology, a laboratory manual, 6th edn. California: Pearson Education Inc; 2002
    [Google Scholar]
  11. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics New York: Wiley; 1991
    [Google Scholar]
  12. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  13. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  14. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  15. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  16. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology 1971; 20:406 [View Article]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  18. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  19. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  20. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  21. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  22. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  23. Li F-N, Liao S-L, Liu S-W, Jin T, Sun C-H. Aeromicrobium endophyticum sp. nov., an endophytic actinobacterium isolated from reed (Phragmites australis). J Microbiol 2019; 57:725–731 [View Article]
    [Google Scholar]
  24. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42:457–469 [View Article]
    [Google Scholar]
  25. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101 MIDI Inc: 1990
    [Google Scholar]
  26. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. Journal of Microbiological Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  27. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  28. Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:W276–W282 [View Article] [PubMed]
    [Google Scholar]
  29. Wang H, Liu J, Wang Y, Zhang XH. Vibrio marisflavi sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2011; 61:568–573 [View Article] [PubMed]
    [Google Scholar]
  30. Nam YD, Chang HW, Park JR, Kwon HY, Quan ZX et al. Vibrio litoralis sp. nov., isolated from a Yellow Sea tidal flat in Korea. Int J Syst Evol Microbiol 2007; 57:562–565 [View Article] [PubMed]
    [Google Scholar]
  31. Thompson FL, Thompson CC, Hoste B, Vandemeulebroecke K, Gullian M et al. Vibrio fortis sp. nov. and Vibrio hepatarius sp. nov., isolated from aquatic animals and the marine environment. Int J Syst Evol Microbiol 2003; 53:1495–1501 [View Article]
    [Google Scholar]
  32. Ichise N, Morita N, Hoshino T, Kawasaki K, Yumoto I et al. A mechanism of resistance to hydrogen peroxide in Vibrio rumoiensis S-1. Appl Environ Microbiol 1999; 65:73–79 [View Article] [PubMed]
    [Google Scholar]
  33. Doi H, Chinen A, Fukuda H, Usuda Y. Vibrio algivorus sp. nov., an alginate- and agarose-assimilating bacterium isolated from the gut flora of a turban shell marine snail. Int J Syst Evol Microbiol 2016; 66:3164–3169 [View Article] [PubMed]
    [Google Scholar]
  34. Bleicher A, Neuhaus K, Scherer S. Vibrio casei sp. nov., isolated from the surfaces of two French red smear soft cheeses. Int J Syst Evol Microbiol 2010; 60:1745–1749 [View Article] [PubMed]
    [Google Scholar]
  35. Beaz-Hidalgo R, Doce A, Pascual J, Toranzo AE, Romalde JL. Vibrio gallaecicus sp. nov. isolated from cultured clams in north-western Spain. Systematic and Applied Microbiology 2009; 32:111–117 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005136
Loading
/content/journal/ijsem/10.1099/ijsem.0.005136
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error