1887

Abstract

A Gram-stain-negative, aerobic and rod-shaped novel bacterial strain, designated MAH-26, was isolated from rhizospheric soil of a pine tree. The colonies were orange coloured, smooth, spherical and 0.7–1.8 mm in diameter when grown on Reasoner's 2A (R2A) agar for 2 days. Strain MAH-26 was able to grow at 10–40 °C, at pH 6.0–9.0 and with 0–1.0 % NaCl. Cell growth occurred on nutrient agar, R2A agar, tryptone soya agar and Luria–Bertani agar. The strain gave positive results in oxidase and catalase tests. Strain MAH-26 was closely related to CJ663 and SGM2-10 with a low 16S rRNA gene sequence similarity (92.8 and 92.9 %, respectively) and phylogenetic analysis indicated that the strain formed a distinct phylogenetic lineage from the members of the closely related genera of the family . Strain MAH-26 has a draft genome size of 6 857 405 bp, annotated with 5173 protein-coding genes, 50 tRNA and two rRNA genes. The genomic DNA G+C content was 41.5 mol%. The predominant isoprenoid quinone was menaquinone 7. The major fatty acids were identified as iso-C, iso-C G and iso-C 3OH. On the basis of phylogenetic inference and phenotypic, chemotaxonomic and molecular properties, strain MAH-26 represents a novel species of a novel genus of the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is MAH-26 (=KACC 19749=CGMCC 1.13701).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005132
2021-12-06
2024-04-19
Loading full text...

Full text loading...

References

  1. Kämpfer P, Lodders N, Falsen E. Hydrotalea flava gen. nov., sp. nov., a new member of the phylum Bacteroidetes and allocation of the genera Chitinophaga, Sediminibacterium, Lacibacter, Flavihumibacter, Flavisolibacter, Niabella, Niastella, Segetibacter, Parasegetibacter, Terrimonas, Ferruginibacter, Filimonas and Hydrotalea to the family Chitinophagaceae fam. nov. Int J Syst Evol Microbiol 2011; 61:518–523 [View Article] [PubMed]
    [Google Scholar]
  2. Sangkhobol V, Skerman VBD. Chitinophaga, a new genus of chitinolytic myxobacteria. Int J Syst Bacteriol 1981; 31:285–293 [View Article]
    [Google Scholar]
  3. Yoon M-H, Im W-T. Flavisolibacter ginsengiterrae gen. nov., sp. nov. and Flavisolibacter ginsengisoli sp. nov., isolated from ginseng cultivating soil. Int J Syst Evol Microbiol 2007; 57:1834–1839 [View Article] [PubMed]
    [Google Scholar]
  4. Qu J-H, Yuan H-L. Sediminibacterium salmoneum gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from sediment of a eutrophic reservoir. Int J Syst Evol Microbiol 2008; 58:2191–2194 [View Article] [PubMed]
    [Google Scholar]
  5. Qu J-H, Yuan H-L, Yang J-S, Li H-F, Chen N. Lacibacter cauensis gen. nov., sp. nov., a novel member of the phylum Bacteroidetes isolated from sediment of a eutrophic lake. Int J Syst Evol Microbiol 2009; 59:1153–1157 [View Article] [PubMed]
    [Google Scholar]
  6. Kim B-Y, Weon H-Y, Yoo S-H, Hong S-B, Kwon S-W et al. Niabella aurantiaca gen. nov., sp. nov., isolated from a greenhouse soil in Korea. Int J Syst Evol Microbiol 2007; 57:538–541 [View Article] [PubMed]
    [Google Scholar]
  7. Weon H-Y, Kim B-Y, Yoo S-H, Lee S-Y, Kwon S-W et al. Niastella koreensis gen. nov., sp. nov. and Niastella yeongjuensis sp. nov., novel members of the phylum Bacteroidetes, isolated from soil cultivated with Korean ginseng. Int J Syst Evol Microbiol 2006; 56:1777–1782 [View Article] [PubMed]
    [Google Scholar]
  8. An D-S, Lee H-G, Im W-T, Liu Q-M, Lee S-T. Segetibacter koreensis gen. nov., sp. nov., a novel member of the phylum Bacteroidetes, isolated from the soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 2007; 57:1828–1833 [View Article] [PubMed]
    [Google Scholar]
  9. Zhang K, Tang Y, Zhang L, Dai J, Wang Y et al. Parasegetibacter luojiensis gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from a forest soil. Int J Syst Evol Microbiol 2009; 59:3058–3062 [View Article] [PubMed]
    [Google Scholar]
  10. Xie CH, Yokota A. Reclassification of [Flavobacterium] ferrugineum as Terrimonas ferruginea gen. nov., comb. nov., and description of Terrimonas lutea sp. nov., isolated from soil. Int J Syst Evol Microbiol 2006; 56:1117–1121 [View Article] [PubMed]
    [Google Scholar]
  11. Lim JH, Baek SH, Lee ST. Ferruginibacter alkalilentus gen. nov., sp. nov. and Ferruginibacter lapsinanis sp. nov., novel members of the family “Chitinophagaceae” in the phylum Bacteroidetes, isolated from freshwater sediment. Int J Syst Evol Microbiol 2009; 59:2394–2399 [View Article] [PubMed]
    [Google Scholar]
  12. Shiratori H, Tagami Y, Morishita T, Kamihara Y, Beppu T et al. Filimonas lacunae gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from fresh water. Int J Syst Evol Microbiol 2009; 59:1137–1142 [View Article] [PubMed]
    [Google Scholar]
  13. Zhang NN, Qu JH, Yuan HL, Sun YM, Yang JS. Flavihumibacter petaseus gen. nov., sp. nov., isolated from soil of a subtropical rainforest. Int J Syst Evol Microbiol 2010; 60:1609–1612 [View Article] [PubMed]
    [Google Scholar]
  14. Huq MA. Microvirga rosea sp. nov.: a nanoparticle producing bacterium isolated from soil of rose garden. Arch Microbiol 2018; 200:1439–1445 [View Article] [PubMed]
    [Google Scholar]
  15. Akter S, Huq MA. Biological synthesis of ginsenoside Rd using Paenibacillus horti sp. nov. isolated from vegetable garden. Curr Microbiol 2018; 75:1566–1573 [View Article] [PubMed]
    [Google Scholar]
  16. Huq MA. Paenibacillus anseongense sp. nov. a silver nanoparticle producing bacterium isolated from rhizospheric soil. Curr Microbiol 2020; 77:2023–2030 [View Article] [PubMed]
    [Google Scholar]
  17. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematic New York: Wiley; 1991 pp 115–175
    [Google Scholar]
  18. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  19. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  20. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  21. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983 [View Article]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Bio Evol 1987; 4:406–425
    [Google Scholar]
  23. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 2017; 39:783–791 [View Article]
    [Google Scholar]
  25. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article] [PubMed]
    [Google Scholar]
  26. Shi W, Sun Q, Fan G, Hideaki S, Moriya O et al. gcType: a high-quality type strain genome database for microbial phylogenetic and functional research. Nucleic Acids Res 2021; 49:D694–D705 [View Article]
    [Google Scholar]
  27. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  28. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article] [PubMed]
    [Google Scholar]
  29. Huq MA. Chryseobacterium chungangensis sp. nov., a bacterium isolated from soil of sweet gourd garden. Arch Microbiol 2018; 200:581–587 [View Article] [PubMed]
    [Google Scholar]
  30. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980; 8:87–91 [View Article]
    [Google Scholar]
  31. Huq MA. Caenispirillum humi sp. nov., a bacterium isolated from the soil of Korean pine garden. Arch Microbiol 2018; 200:343–348 [View Article] [PubMed]
    [Google Scholar]
  32. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  33. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42:457–469 [View Article]
    [Google Scholar]
  34. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354 [View Article] [PubMed]
    [Google Scholar]
  35. Wei Z, Huang Y, Danzeng W, Kim MC, Zhu G et al. Flavitalea antarctica sp. nov., isolated from Fildes Peninsula, Antarctica. Int J Syst Evol Microbiol 2017; 67:2258–2262 [View Article] [PubMed]
    [Google Scholar]
  36. Kim SJ, Ahn JH, Weon HY, Hong SB, Seok SJ et al. Parasegetibacter terrae sp. nov., isolated from paddy soil and emended description of the genus Parasegetibacter. Int J Syst Evol Microbiol 2015; 65:113–116 [View Article] [PubMed]
    [Google Scholar]
  37. Kim YJ, Nguyen NL, Weon HY, Yang DC. Sediminibacterium ginsengisoli sp. nov., isolated from soil of a ginseng field, and emended descriptions of the genus Sediminibacterium and of Sediminibacterium salmoneum. Int J Syst Evol Microbiol 2013; 63:905–912 [View Article] [PubMed]
    [Google Scholar]
  38. Kim S-J, Cho H, Ahn J-H, Weon H-Y, Joa J-H et al. Terrimonas terrae sp. nov., isolated from the rhizosphere of a tomato plant. Int J Syst Evol Microbiol 2017; 67:3105–3110 [View Article] [PubMed]
    [Google Scholar]
  39. Hyeon JW, Lee HJ, Jeong SE, Cho GY, Jeon CO. Niveitalea solisilvae gen. nov., sp. nov., isolated from forest soil and emended description of the genus Flavihumibacter Zhang et al. 2010. Int J Syst Evol Microbiol 2017; 67:1374–1380 [View Article] [PubMed]
    [Google Scholar]
  40. Chaudhary DK, Kim J. Arvibacter flaviflagrans gen. nov., sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2016; 66:4347–4354 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005132
Loading
/content/journal/ijsem/10.1099/ijsem.0.005132
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error