1887

Abstract

An actinomycete strain, LCR2-06, isolated from a lichen sample on rock collected from Chiang Rai Province (Pong Phra Bat Waterfall), Thailand, was characterized using a polyphasic approach. The strain grew at 25–45 °C, pH 6–11 and on International Project 2 agar plate with 5 % (w/v) NaCl. It contained -diaminopimelic acid as the diamino acid in whole-cell hydrolysates. Rhamnose, ribose, xylose, madurose, glucose and galactose were detected as whole-cell sugar hydrolysates. Mycolic acids were absent. The -acyl type of muramic acid was acetyl. The strain contained C, TBSA 10-methyl C and 2-hydroxy C as the predominant fatty acids and MK-9(H), MK-9(H) and MK-9(H) as the major menaquinones. The major polar lipids were diphosphatidylglycerol, phosphatidylinositol and unidentified phospholipid. The draft genome of strain LCR2-06 was closely related to TBRC 7225 (99.2 %), NBRC 15918 (98.8 %), TISTR 2400 (98.5 %) and JCM 33455 (97.9 %). The draft genome of LCR2-06 was 11.1 Mb with 10 588 coding sequences with an average G+C content of 72.7 mol%. Results of genomic analysis revealed that the ANIb and ANIm values between strain LCR2-06 and TISTR 2400 were 90.0 and 92.0 %, respectively. The digital DNA–DNA hybridization value was 43.9 % in comparison with the draft genome of TISTR 2400. The strain produced an antibacterial compound active against ATCC 6633 and ATCC 9341. The results of taxonomic analysis suggested that strain LCR2-06 represented a novel species of the genus for which the name sp. nov. is proposed. The type strain is LCR2-06 (=JCM 33065=KCTC 49547=NBRC 114810=LMG 32136=TISTR 2935).

Funding
This study was supported by the:
  • Ratchadapiseksomphot Endowment Fund, Chulalongkorn University for a post-doctoral fellowship to P. K.
    • Principle Award Recipient: PawinaKanchanasin
  • International Research Integration: Research Pyramid, Ratchadaphiseksomphot Endowment Fund (GCURP_58_01_33_01), Chulalongkorn University (Award GCURP_58_01_33_01)
    • Principle Award Recipient: SomboonTanasupawat
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005126
2021-12-06
2024-04-25
Loading full text...

Full text loading...

References

  1. Lechevalier MP, Lechevalier HA. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20:435–443 [View Article]
    [Google Scholar]
  2. Kroppenstedt RM, Stackebrandt E, Goodfellow M. Taxonomic revision of the Actinomycete genera Actinomadura and Microtetraspora. Syst Appl Microbiol 1990; 13:148–160 [View Article]
    [Google Scholar]
  3. Kroppenstedt RM, Goodfellow M. The family Thermomonosporaceae: Actinocorallia, Actinomadura, Spirillospora and Thermomonospora. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. eds The Prokaryotes USA: Springer-Verlag; 2006 pp 682–724
    [Google Scholar]
  4. Songsumanus A, Kudo T, Ohkuma M, Phongsopitanun W, Tanasupawat S. Actinomadura montaniterrae sp. nov., isolated from mountain soil. Int J Syst Evol Microbiol 2016; 66:3310–3316 [View Article] [PubMed]
    [Google Scholar]
  5. Miyadoh S, Amano S, Tohyama H, Shomura T. Actinomadura atramentaria, a new species of the Actinomycetales. Int J Syst Bacteriol 1987; 37:342–346 [View Article]
    [Google Scholar]
  6. Songsumanus A, Kuncharoen N, Kudo T, Yuki M, Ohkuma M et al. Actinomadura decatromicini sp. nov., isolated from mountain soil in Thailand. J Antibiot 2020; 74:51–58
    [Google Scholar]
  7. Benndorf R, Martin K, Küfner M, de Beer ZW, Vollmers J et al. Actinomadura rubteroloni sp. nov. and Actinomadura macrotermitis sp. nov., isolated from the gut of the fungus growing-termite Macrotermes natalensis. Int J Syst Evol Microbiol 2020; 70:5255–5262 [View Article] [PubMed]
    [Google Scholar]
  8. Abagana AY, Sun P, Liu C, Cao T, Zheng W et al. Actinomadura gamaensis sp. nov., a novel actinomycete isolated from soil in Gama, Chad. Antonie van Leeuwenhoek 2016; 109:833–839 [View Article] [PubMed]
    [Google Scholar]
  9. Qin S, Zhao G-Z, Li J, Zhu W-Y, Xu L-H et al. Actinomadura flavalba sp. nov., an endophytic actinomycete isolated from leaves of Maytenus austroyunnanensis. Int J Syst Evol Microbiol 2009; 59:2453–2457 [View Article] [PubMed]
    [Google Scholar]
  10. Qin S, Chen H-H, Zhao G-Z, Li J, Zhu W-Y et al. Abundant and diverse endophytic actinobacteria associated with medicinal plant Maytenus austroyunnanensis in Xishuangbanna tropical rainforest revealed by culture-dependent and culture-independent methods. Environ Microbiol Rep 2012; 4:522–531 [View Article] [PubMed]
    [Google Scholar]
  11. Ara I, Matsumoto A, Abdul Bakir M, Kudo T, Omura S et al. Actinomadura maheshkhaliensis sp. nov., a novel actinomycete isolated from mangrove rhizosphere soil of Maheshkhali, Bangladesh. J Gen Appl Microbiol 2008; 54:335–342 [View Article] [PubMed]
    [Google Scholar]
  12. He J, Xu Y, Tian XP, Sahu MK, Nie GX et al. Actinomadura sediminis sp. nov., a marine actinomycete isolated from mangrove sediment. Int J Syst Bacteriol 2012; 62:1110–1116
    [Google Scholar]
  13. Promnuan Y, Kudo T, Ohkuma M, Chantawannakul P. Actinomadura apis sp. nov., isolated from a honey bee (Apis mellifera) hive, and the reclassification of Actinomadura cremea subsp. rifamycini Gauze et al. 1987 as Actinomadura rifamycini (Gauze et al. 1987) sp. nov., comb. nov. Int J Syst Evol Microbiol 2011; 61:2271–2277 [View Article] [PubMed]
    [Google Scholar]
  14. Nakamura G, Isono K. A new species of Actinomadura producing a polyether antibiotic, cationomycin. J Antibiot 1983; 36:1468–1472 [View Article]
    [Google Scholar]
  15. Oki T, Konishi M, Tomatsu K, Tomita K, Saitoh K-I et al. Pradimicin, a novel class of potent antifungal antibiotics. J Antibiot 1988; 41:1701–1704 [View Article]
    [Google Scholar]
  16. Kornsakulkarn J, Saepua S, Boonruangprapa T, Suphothina S, Thongpanchang C. New β-carboline and indole alkaloids from Actinomycete Actinomadura sp. BCC 24717. Phytochem Lett 2013; 6:491–494 [View Article]
    [Google Scholar]
  17. Han X-X, Cui C-B, Gu Q-Q, Zhu W-M, Liu H-B et al. ZHD-0501, a novel naturally occurring staurosporine analog from Actinomadura sp. 007. Tetrahedron Lett 2005; 46:6137–6140 [View Article]
    [Google Scholar]
  18. Shaaban KA, Elshahawi SI, Wang X, Horn J, Kharel MK et al. Cytotoxic indolocarbazoles from Actinomadura melliaura ATCC 39691. J Nat Prod 2015; 78:1723–1729 [View Article] [PubMed]
    [Google Scholar]
  19. Takagi M, Motohashi K, Khan ST, Hashimoto J, Shin-ya K. JBIR-65, a new diterpene, isolated from a sponge-derived Actinomadura sp. SpB081030SC-15. J Antibiot 2010; 63:401–403 [View Article]
    [Google Scholar]
  20. Simmons L, Kaufmann K, Garcia R, Schwär G, Huch V et al. Bendigoles D-F, bioactive sterols from the marine sponge-derived Actinomadura sp. SBMs009. Bioorg Med Chem 2011; 19:6570–6575 [View Article] [PubMed]
    [Google Scholar]
  21. Mazzei E, Iorio M, Maffioli SI, Sosio M, Donadio S. Characterization of madurastatin C1, a novel siderophore from Actinomadura sp. J Antibiot 2012; 65:267–269 [View Article]
    [Google Scholar]
  22. Igarashi Y, Iida T, Oku N, Watanabe H, Furihata K et al. Nomimicin, a new spirotetronate-class polyketide from an actinomycete of the genus Actinomadura. J Antibiot 2012; 65:355–359 [View Article]
    [Google Scholar]
  23. Intaraudom C, Dramae A, Supothina S, Komwijit S, Pittayakhajonwut P. 3-Oxyanthranilic acid derivatives from Actinomadura sp. BCC 27169. Tetrahedron 2014; 70:2711–2716 [View Article]
    [Google Scholar]
  24. Hayakawa M, Nonomura H. Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Tech 1987; 65:501–509 [View Article]
    [Google Scholar]
  25. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  26. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  27. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  28. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp 115–148
    [Google Scholar]
  29. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  30. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  31. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  32. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18:1 [View Article]
    [Google Scholar]
  33. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  34. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  35. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  36. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  37. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  38. Aziz RK, Devoid S, Disz T, Edwards RA, Henry CS et al. SEED servers: high-performance access to the SEED genomes, annotations, and metabolic models. PLoS One 2012; 7:e48053 [View Article] [PubMed]
    [Google Scholar]
  39. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  40. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  41. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  42. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  43. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  44. Kelly KL. Inter-Society Color Council - National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  45. Arai T. Culture Media for Actinomycetes Tokyo: The Society for Actinomycetes Japan; 1975
    [Google Scholar]
  46. Williams ST, Cross T. Chapter XI Actinomycetes. Methods Microbiol 1971; 4295–334
    [Google Scholar]
  47. Lorian V. Antibiotics in Laboratory Medicine Baltimore: The Williams and Wilkins Company; 1991
    [Google Scholar]
  48. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
  49. Tomiyasu I. Mycolic acid composition and thermally adaptative changes in Nocardia asteroides. J Bacteriol 1982; 151:828–837 [View Article] [PubMed]
    [Google Scholar]
  50. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  51. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in Actinomycetes and Corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  52. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  53. Harada K-I, Tomita K, Fujii K, Masuda K, Mikami Y et al. Isolation and structural characterization of siderophores, madurastatins, produced by a pathogenic Actinomadura madurae. J Antibiot 2004; 57:125–135 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005126
Loading
/content/journal/ijsem/10.1099/ijsem.0.005126
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error