1887

Abstract

A bacterial strain designated 26B, which had been isolated from the cloaca of a toad-headed turtle, was subjected to a comprehensive taxonomic study. Comparison of 16S rRNA gene sequences demonstrated that strain 26B is a member of the family . Based on highest similarity values, DSM 21642 (95.15 %), ATCC 15532 (95.06 %), 07_OD624 (94.71 %), CCUG 47806 (94.66 %) and DSM 2578 (94.64 %) were identified as the closest relatives. Average nucleotide identity values based on the algorithm (ANIb) indicated that (76.10/76.17 %), 871 (74.34/74.51 %), (73.30/73.41 %), (72.98/72.80) %, (71.14/71.21 %) and (70.53/71.15 %) are the next closest relatives. Like ANIb, genome-based phylogeny did not suggest the affiliation of strain 26B with any established genus. The polyamine pattern consisted of the major compounds putrescine, 1,3-diaminopropane and spermidine and the major quinone was ubiquinone Q-8. In the polar lipid profile, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an ornithine lipid were predominant. The fatty acid profile contained predominantly C ω7, C, C, C and C 3OH. The size of the genome was 2.91 Mbp and the genomic G+C content was 54.0 mol%. Since these data do not demonstrate an unambiguous association with any established genus, we here propose the novel genus with the type species gen. nov., sp. nov. The type strain is 26B (=CCM 9137=LMG 32212).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005114
2021-11-19
2024-04-25
Loading full text...

Full text loading...

References

  1. Xie C-H, Yokota A. Phylogenetic analysis of Alysiella and related genera of Neisseriaceae: Proposal of Alysiella crassa comb. nov., Conchiformibium steedae gen. nov., comb. nov., Conchiformibium kuhniae sp. nov.and Bergeriella denitrificans gen. nov., comb. nov. J Gen Appl Microbiol 2005; 51:1–10 [View Article] [PubMed]
    [Google Scholar]
  2. Moß KS, Hartmann SC, Müller I, Fritz C, Krügener S et al. Amantichitinum ursilacus gen. nov., sp. nov., a chitin‐degrading bacterium isolated from soil. Int J Syst Evol Microbiol 2013; 63:98–103 [View Article] [PubMed]
    [Google Scholar]
  3. Chan K-G, See-Too W-S, Chua K-O, Á P, Mau Goh K et al. Aquella oligotrophica gen. nov. sp. nov.: A new member of the family Neisseriaceae isolated from laboratory tap water. Microbiologyopen 2019; 8:e00793 [View Article] [PubMed]
    [Google Scholar]
  4. Liu Z-X, Phurbu D, Liu H-C, Zhou Y-G, Li A-H. Craterilacuibacter sinensis gen. nov. sp. nov., isolated from a crater lake in China. Int J Syst Evol Microbiol 2020; 70:4831–4837 [View Article] [PubMed]
    [Google Scholar]
  5. Dong L, Ming H, Zhou E-M, Yin Y-R, Liu L et al. Crenobacter luteus gen. nov., sp. nov., isolated from a hot spring. Int J Syst Evol Microbiol 2015; 65:214–219 [View Article] [PubMed]
    [Google Scholar]
  6. Jackson FL, Goodman YE. Transfer of the facultatively anaerobic organism Bacteroides corrodens Eiken to a new genus Eikenella. Int J Syst Bacteriol 1972; 22:73–77 [View Article]
    [Google Scholar]
  7. Long PA, Sly LI, Pham AV, Davis GHG. Characterization of Morococcus cerebrosus gen. nov., sp. nov. and comparison with Neisseria mucosa. Int J Syst Bacteriol 1981; 31:294–301 [View Article]
    [Google Scholar]
  8. Henriksen SD, Bøvre K. Transfer of Moraxella kingae Henriksen and Bøvre to the genus Kingella gen. nov. in the family Neisseriaceae. Int J Syst Bacteriol 1976; 26:447–450 [View Article]
    [Google Scholar]
  9. Trevisan V. Carratteri di alcuni nuovi generi di Batteriacee. Atti della Accademia Fisica-Medica-Stastistica in Milano 1885; 3:92–107
    [Google Scholar]
  10. Pot B, Willems A, Gillis M, De Ley J. Intra- and intergeneric relationships of the genus Aquaspirillum: Prolinoborus, a new genus for Aquaspirillum fasciculus, with the species Prolinoborus fasciculus comb. nov. Int J Syst Bacteriol 1992; 42:44–57 [View Article]
    [Google Scholar]
  11. Sheu S-Y, Chen J-C, Young C-C, Chen W-M. Rivicola pingtungensis gen. nov., sp. nov., a new member of the family Neisseriaceae isolated from a freshwater river. Int J Syst Evol Microbiol 2014; 64:2009–2016 [View Article] [PubMed]
    [Google Scholar]
  12. Simons H. Saprophytische Oscillarien des Menschen und der Tiere. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abteilung I 1922; 88:501–510
    [Google Scholar]
  13. Kwong WK, Moran NA. Cultivation and characterization of the gut symbionts of honey bees and bumble bees: description of Snodgrassella alvi gen. nov., sp. nov., a member of the family Neisseriaceae of the Betaproteobacteria, and Gilliamella apicola gen. nov., sp. nov., a member of Orbaceae fam. nov., Orbales ord. nov., a sister taxon to the order ‘Enterobacteriales’ of the Gammaproteobacteria. Int J Syst Evol Microbiol 2013; 63:2008–2018 [View Article] [PubMed]
    [Google Scholar]
  14. Wertz JT, Breznak JA. Stenoxybacter acetivorans gen. nov., sp. nov., an acetate-oxidizing obligate microaerophile among diverse O2-consuming bacteria from termite guts. Appl Environ Microbiol 2007; 73:6819–6828 [View Article] [PubMed]
    [Google Scholar]
  15. Vela AI, Collins MD, Lawson PA, Garcia N, Dominguez L et al. Uruburuella suis gen. nov., sp. nov., isolated from clinical specimens of pigs. Int J Syst Evol Microbiol 2005; 55:643–647 [View Article] [PubMed]
    [Google Scholar]
  16. Pringsheim EG. The relationship between bacteria and myxophyceae. Bacteriol Rev 1949; 13:47–98 [View Article] [PubMed]
    [Google Scholar]
  17. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  18. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article] [PubMed]
    [Google Scholar]
  19. Wallace PL, Hollis DG, Weaver RE, Moss CW. Cellular fatty acid composition of Kingella species, Cardiobacterium hominis, and Eikenella corrodens. J Clin Microbiol 1988; 26:1592–1594 [View Article] [PubMed]
    [Google Scholar]
  20. Holmes B, Costas M, On LW, Vandamme P, Falsen E et al. Neisseria weaveri sp. nov. (formerly CDC Group M-5), from dog bite wounds of humans. Int J Syst Bacteriol 1993; 43:687–693 [View Article] [PubMed]
    [Google Scholar]
  21. Wolfgang JW, Carpenter AN, Cole JA, Gronow S, Habura A et al. Neisseria wadsworthii sp. nov. and Neisseria shayeganii sp. nov., isolated from clinical specimens. Int J Syst Evol Microbiol 2011; 61:91–98 [View Article] [PubMed]
    [Google Scholar]
  22. Lawson PA, Malnick H, Collins MD, Shah JJ, Chattaway MA et al. Description of Kingella potus sp. nov., an organism isolated from a wound caused by an animal bite. J Clin Microbiol 2005; 43:3526–3529 [View Article] [PubMed]
    [Google Scholar]
  23. Wolfgang JW, Passaretti TV, Jose R, Cole J, Coorevits A et al. Neisseria oralis sp. nov., isolated from healthy gingival plaque and clinical samples. Int J Syst Evol Microbiol 2013; 63:1323–1328 [View Article] [PubMed]
    [Google Scholar]
  24. Moaledj K. Comparison of Gram-staining and alternate methods, KOH test and aminopeptidase activity in aquatic bacteria: their application to numerical taxonomy. J Microbiol Meth 1986; 5:303–310 [View Article]
    [Google Scholar]
  25. Lane DJ. 16S/23S rRNA sequencing. Stackebrandt E, Goodfellow M. eds In Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp 115–175
    [Google Scholar]
  26. Vandamme P, Holmes B, Bercovier H, Coenye T. Classification of Centers for Disease Control group eugonic fermenter (EF)-4a and EF-4b as Neisseria animaloris sp. nov and Neisseria zoodegmatis sp. nov, respectively. Int J Syst Evol Microbiol 2006; 56:1801–1805
    [Google Scholar]
  27. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nuc Acids Res 1997; 24:4876–4882 [View Article]
    [Google Scholar]
  28. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  29. Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.695 Seattle, WA: Department of Genome Sciences, University of Washington; 2013
    [Google Scholar]
  30. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  31. Richter M, Rosselló-Móra R, Glöckner FO, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  32. Wattam AR, Gabbard JL, Shukla M, Sobral BW. Comparative genomic analysis at the PATRIC, a bioinformatic resource center. Methods Mol Biol 2014; 1197:287–308 [View Article] [PubMed]
    [Google Scholar]
  33. Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  34. Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 2008; 57:758–771 [View Article] [PubMed]
    [Google Scholar]
  35. Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004; 14:1394 [View Article] [PubMed]
    [Google Scholar]
  36. Blom J, Kreis J, Spänig S, Juhre T, Bertelli C. EDGAR 2.0: an enhanced software platform for comparative gene content analyses. Nucleic Acids Res 2016; 44:W22 [View Article] [PubMed]
    [Google Scholar]
  37. Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH et al. A genus definition for bacteria and archaea based on a standard genome relatedness index. mBio 2020; 11:e02475-19 [View Article]
    [Google Scholar]
  38. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015; 43:6761–6771 [View Article] [PubMed]
    [Google Scholar]
  39. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38:101–129
    [Google Scholar]
  40. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  41. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  42. Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996; 47:39–52 [View Article]
    [Google Scholar]
  43. Li Y, Xue H, Sang Sq, Lin Cl, Wang Xz. Phylogenetic analysis of family Neisseriaceae based on genome sequences and description of Populibacter corticis gen. nov., sp. nov., a member of the family Neisseriaceae, isolated from symptomatic bark of Populus × euramericana canker. PLOS ONE 2017; 12:e0174506
    [Google Scholar]
  44. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. 1988. Syst Appl Microbiol 1988; 11:1–8
    [Google Scholar]
  45. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Evol Microbiol 1997; 47:698–708
    [Google Scholar]
  46. Stolz A, Busse H-J, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007; 57:572–576 [View Article] [PubMed]
    [Google Scholar]
  47. Hamana K, Sato W, Gouma K, Yu J, Ino Y et al. Cellular polyamine catalogues of the five classes of the phylum Proteobacteria: distributions of homospermidine within the class Alphaproteobacteria, hydroxyputrescine within the class Betaproteobacteria, norspermidine within the class Gammaproteobacteria, and spermidine within the classes Deltaproteobacteria and Epsilonproteobacteria. Ann Gunma Health Sci 2006; 27:1–16
    [Google Scholar]
  48. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  49. Kuhnert P, Thomann A, Brodard I, Haefeli W, Korczak BM. Uruburuella testudinis sp. nov., isolated from tortoise (Testudo. Int J Syst Evol Microbiol 2015; 65:1251–1255 [View Article] [PubMed]
    [Google Scholar]
  50. Wroblewski D, Cole J, McGinnis J, Perez M, Wilson H. Neisseria dumasiana sp. nov. from human sputum and a dog’s mouth. Int J Syst Evol Microbiol 2017; 67:4304–4310 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005114
Loading
/content/journal/ijsem/10.1099/ijsem.0.005114
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error