1887

Abstract

A novel actinobacterium, designated strain DW4-2, was isolated from duckweed ( sp.) collected from an agricultural pond in Kasetsart University, Bangkok, Thailand. The morphological, chemotaxonomic and phylogenetic characteristics were consistent with its classification in the genus . Strain DW4-2 showed the highest 16S rRNA gene sequence similarity values to DSM 42035 (98.5 %), S DSM 42105 (98.4 %) and S16-07 (98.4 %). Digital DNA–DNA hydridization and average nucleotide identity values between the genome sequences of strain DW4-2 with DSM 42035 (29.8 and 87.8 %), DSM 42105 (33.1 and 89.0 %) and S16-07 (33.0 and 88.9 %) were below the thresholds of 70 and 95–96 % for prokaryotic conspecific assignation. Chemotaxonomic data revealed that strain DW4-2 possessed MK-9(H) and MK-9(H) as the predominant menaquinones. It contained diaminopimelic acid as the diagnostic diamino acid and glucose, ribose and trace amount of madurose in whole-cell sugars. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside, an unidentified aminolipid, an unidentified lipid and an unidentified phospholipid. The predominant cellular fatty acids were -C, -C and -C. The genomic DNA size of the strain DW4-2 was 7 310 765 bp with DNA G+C content 71.0 mol%. Genomic analysis of the genome indicated that the strain DW4-2 had the potential to produce bioactive compounds. On the basis of these genotypic and phenotypic data, it is supported that strain DW4-2 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is strain DW4-2 (=TBRC 13095=NBRC 114803).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005106
2021-11-09
2021-12-03
Loading full text...

Full text loading...

References

  1. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 2018; 9:2007 [View Article] [PubMed]
    [Google Scholar]
  2. Waksman SA, Henrici AT. The nomenclature and classification of the actinomycetes. J Bacteriol 1943; 46:337–341 [View Article] [PubMed]
    [Google Scholar]
  3. Goodfellow M, Fiedler HP. A guide to successful bioprospecting: Informed by actinobacterial systematics. Antonie van Leeuwenhoek 2010; 98:119–142 [View Article] [PubMed]
    [Google Scholar]
  4. Katz L, Baltz RH. Natural product discovery: Past, present, and future. J Ind Microbiol Biotechnol 2016; 43:155–176 [View Article] [PubMed]
    [Google Scholar]
  5. Kämpfer P. Genus I. Streptomyces Waksman and Henrici 1943, 339 emend. Witt and Stackebrandt 1990, 370 emend. Wellington, Stackebrandt, Sanders, Wolstrup and Jorgensen 1992, 159. Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K. eds In Bergey’s Manual of Systematic Bacteriology Vol 5 New York: Springer; 2012 p 1455
    [Google Scholar]
  6. Wang W, Wu Y, Yan Y, Ermakova M, Kerstetter R et al. DNA barcoding of the Lemnaceae, a family of aquatic monocots. BMC Plant Biol 2010; 10:205 [View Article] [PubMed]
    [Google Scholar]
  7. Ziegler P, Sree KS, Appenroth KJ. Duckweeds for water remediation and toxicity testing. Toxicol Environ Chem 2016; 98:1127–1154 [View Article]
    [Google Scholar]
  8. Cui W, Cheng JJ. Growing duckweed for biofuel production: A review. Plant Biol (Stuttg) 2015; 17 Suppl 1:16–23 [View Article] [PubMed]
    [Google Scholar]
  9. Kuester E, Williams ST. Selection of media for isolation of Streptomycetes. Nature 1964; 202:928–929 [View Article] [PubMed]
    [Google Scholar]
  10. Kieser T, Bibb MJ, Chater KF, Butter MJ, Hopwood DA et al. Practical Streptomyces Genetics Norwich, UK: John Innes Foundation; 2000
    [Google Scholar]
  11. Mingma R, Pathom-aree W, Trakulnaleamsai S, Thamchaipenet A, Duangmal K. Isolation of rhizospheric and roots endophytic actinomycetes from Leguminosae plant and their activities to inhibit soybean pathogen, Xanthomonas campestris PV. Glycine. World J Microbiol Biotechnol 2014; 30:271–280 [View Article] [PubMed]
    [Google Scholar]
  12. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing Ezbiocloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  13. Saitou N, Nei M. The Neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  14. Felsenstein J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  15. Fitch WM. Toward defining the course of evolution: Minimum change for a specific tree topology. Systematic Biology 1971; 20:406–416 [View Article]
    [Google Scholar]
  16. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  17. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  18. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving Bacterial Genome Assemblies from Short and Long Sequencing Reads. PLoS Comput Biol 2016; 8:1005595
    [Google Scholar]
  19. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  20. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  21. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  22. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. Jspeciesws: A web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  24. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. Antismash 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:29–35
    [Google Scholar]
  25. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  26. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Evol Microbiol 1966; 16:313–340
    [Google Scholar]
  27. Mundie D. The NBS/ISCC Color System/David A Mundie Pittsburgh, PA: Polymath Systems 5356 dc-20; 1995
    [Google Scholar]
  28. Gordon RE, Barnett DA, Handerhan JE, Pang C-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Evol Microbiol 1974; 24:54–63
    [Google Scholar]
  29. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983; 129:1743–1813 [View Article] [PubMed]
    [Google Scholar]
  30. Gordon RE, Mihm JM. A comparative study of some strains received as nocardiae. J Bacteriol 1957; 73:15–27 [View Article] [PubMed]
    [Google Scholar]
  31. Becker B, Lechevalier MP, Lechevalier HA. Chemical composition of cell-wall preparations from strains of various form-genera of aerobic actinomycetes. Appl Microbiol 1965; 13:236–243 [View Article] [PubMed]
    [Google Scholar]
  32. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  33. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
  34. Minnikin D, Patel P, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Evol Microbiol 1977; 27:104–117
    [Google Scholar]
  35. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, Delaware, United States: MIDI, Inc; 2001 pp 1–7
    [Google Scholar]
  36. Lechevalier MP, De Bievre C, Lechevalier H. Chemotaxonomy of aerobic actinomycetes: Phospholipid composition. Biochemical Systematics and Ecology 1977; 5:249–260 [View Article]
    [Google Scholar]
  37. Hu H, Lin H-P, Xie Q, Li L, Xie X-Q et al. Streptomyces qinglanensis sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2012; 62:596–600 [View Article] [PubMed]
    [Google Scholar]
  38. Tatar D, Guven K, Spröer C, Klenk H-P, Sahin N. Streptomyces iconiensis sp. nov. and Streptomyces smyrnaeus sp. nov., two halotolerant actinomycetes isolated from a salt lake and saltern. Int J Syst Evol Microbiol 2014; 64:3126–3133 [View Article] [PubMed]
    [Google Scholar]
  39. Mingma R, Duangmal K, Thamchaipenet A, Trakulnaleamsai S, Matsumoto A et al. Streptomyces oryzae sp. nov., an endophytic actinomycete isolated from stems of rice plant. J Antibiot 2015; 68:368–372 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005106
Loading
/content/journal/ijsem/10.1099/ijsem.0.005106
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error