1887

Abstract

Red-pigmented strains of non-sporeforming, aerobic, chemoorganotrophic bacteria were isolated from intertidal hot springs in Laugarvík, NW-Iceland. Cells stained Gram-negative and formed pleomorphic rods that often had swollen ends and occurred singly or in filaments. Growth was observed at 40-65 °C (optimum at 60 °C), pH 6-9 (optimum at 6.5–8) and 0.5–5% (optimum at 1–2%) (w/v) NaCl. Strain ISCAR-4553 contained MK-7 as the main respiratory quinone and saturated iso and anteiso branched chains of 17 and 15 carbons as the main cellular fatty acids (83.4%). The G+C content of the DNA is 67.3 mol%. The highest 16S rRNA gene sequence similarity was with the genus (92.0%) and followed by , and (88–90%). Genome and phenotype comparisons supported the affiliation of the novel isolates and the genus to the family of the phylum . The described isolates are proposed to be classified as representatives of a novel species belonging to a novel genus, with the name gen. nov., sp. nov. The type strain is ISCAR-4553 (=DSM 110790 = ATCC TSD-179).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005073
2021-10-21
2024-04-25
Loading full text...

Full text loading...

References

  1. Munoz R, Rosselló-Móra R, Amann R. Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov. Syst Appl Microbiol 2016; 39:281–296 [View Article]
    [Google Scholar]
  2. Munoz R, Rosselló-Móra R, Amann R. Corrigendum to “Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov.” [Syst. Appl. Microbiol. 39 (5) (2016) 281-296]. Syst Appl Microbiol 2016; 39:491–492
    [Google Scholar]
  3. Park MJ, Oh JH, Yang SH, Kwon KK. Roseithermus sacchariphilus gen. nov., sp. nov. and proposal of Salisaetaceae fam. nov., representing new family in the order Rhodothermales . Int J Syst Evol Microbiol 2019; 69:1213–1219 [View Article] [PubMed]
    [Google Scholar]
  4. Ludwig W, Euzéby J, Whitman WB. Family I. Rhodothermaceae fam. nov. Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ. eds In Bergey’s Manual of Systematic Bacteriology, 2nd. edn Vol 4 New York: Springer; 2010 p 457
    [Google Scholar]
  5. Alfredsson GA, Kristjansson JK, Hjorleifsdottir S, Stetter KO. Rhodothermus marinus, gen. nov., sp. nov., a thermophilic, halophilic bacterium from submarine hot springs in Iceland. Microbiology 1988; 134:299–306 [View Article]
    [Google Scholar]
  6. ZoBell CE. Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 1941; 42–75:
    [Google Scholar]
  7. Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  8. Schaeffer AB, Fulton M. A simplified method of staining endospores. Science 1933; 77:194 [View Article] [PubMed]
    [Google Scholar]
  9. Brock TD, Brock ML. The measurement of chlorophyll, primary productivity, photophosphorylation, and macromolecules in benthic algal mats. Limnol Oceanogr 1967; 12:600–605 [View Article]
    [Google Scholar]
  10. Bjornsdottir SH, Petursdottir SK, Hreggvidsson GO, Skirnisdottir S, Hjorleifsdottir S et al. Thermus islandicus sp. nov., a mixotrophic sulfur-oxidizing bacterium isolated from the Torfajokull geothermal area. Int J Syst Evol Microbiol 2009; 59:2962–2966 [View Article] [PubMed]
    [Google Scholar]
  11. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  12. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  13. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M et al. Geneious Basic: An integrative and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012; 28:1647–1649 [View Article] [PubMed]
    [Google Scholar]
  14. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  15. Goh KM, Chan KG, Lim SW, Liew KJ, Chan CS et al. Genome analysis of a new Rhodothermaceae strain isolated from a hot spring. Front Microbiol 2016; 7:1109 [View Article] [PubMed]
    [Google Scholar]
  16. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  17. Jukes TH, Cantor CR. Evolution of protein molecules. Munro HN. ed In Mammalian protein metabolism New York: Academic Press; 1969 pp 21–132
    [Google Scholar]
  18. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGAX: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  19. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article] [PubMed]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  21. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  23. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods 2015; 12:59–60 [View Article] [PubMed]
    [Google Scholar]
  24. Buchfink B, Reuter K, Drost H-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods 2021; 18:366–368 [View Article] [PubMed]
    [Google Scholar]
  25. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  26. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  27. Tindall BJ. Lipid composition of Rhodothermus marinus . FEMS Microbiol Lett 1991; 80:65–68 [View Article]
    [Google Scholar]
  28. Song J, Joung Y, Park S, Cho JC, Kogure K. Rubrivirga profundi sp. nov., isolated from deep-sea water, and emended description of the genus Rubrivirga . Int J Syst Evol Microbiol 2016; 66:3253–3257 [View Article] [PubMed]
    [Google Scholar]
  29. Xia J, Dunlap CA, Flor-Weiler L, Rooney AP, Chen GJ et al. Longibacter salinarum gen. nov., sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 2016; 66:3287–3292 [View Article] [PubMed]
    [Google Scholar]
  30. Makhdoumi-Kakhki A, Amoozegar MA, Ventosa A. Salinibacter iranicus sp. nov. and Salinibacter luteus sp. nov., isolated from a salt lake, and emended descriptions of the genus Salinibacter and of Salinbacter ruber . Int J Syst Evol Microbiol 2012; 62:1521–1527 [View Article] [PubMed]
    [Google Scholar]
  31. Park S, Song J, Yoshizawa S, Choi A, Cho JC et al. Rubrivirga marina gen. nov., sp. nov., a member of the family Rhodothermaceae isolated from deep seawater. Int J Syst Evol Microbiol 2013; 63:2229–2233 [View Article] [PubMed]
    [Google Scholar]
  32. Park S, Yoshizawa S, Kogure K, Yokota A. Rubricoccus marinus gen. nov., sp. nov., of the family “Rhodothermaceae”, isolated from seawater. Int J Syst Evol Microbiol 2011; 61:2069–2072 [View Article] [PubMed]
    [Google Scholar]
  33. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article] [PubMed]
    [Google Scholar]
  34. Vaisman N, Oren A. Salisaeta longa gen. nov., sp. nov., a red, halophilic member of the Bacteroidetes . Int J Syst Evol Microbiol 2009; 59:2571–2574 [View Article] [PubMed]
    [Google Scholar]
  35. Bjornsdottir SH, Blondal T, Hreggvidsson GO, Eggertsson G, Petursdottir S et al. Rhodothermus marinus: physiology and molecular biology. Extremophiles 2006; 10:1–16 [View Article] [PubMed]
    [Google Scholar]
  36. Marteinsson VT, Bjornsdottir SH, Bienvenu N, Kristjansson JK, Birrien JL. Rhodothermus profundi sp. nov., a thermophilic bacterium isolated from a deep-sea hydrothermal vent in the Pacific Ocean. Int J Syst Evol Microbiol 2010; 60:2729–2734 [View Article] [PubMed]
    [Google Scholar]
  37. Nunes OC, Donato MM, Manaia CM, Da Costa MS. The polar lipid and fatty acid composition of Rhodothermus strains. Syst Appl Microbiol 1992; 15:59–62 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005073
Loading
/content/journal/ijsem/10.1099/ijsem.0.005073
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error