1887

Abstract

Six novel facultatively anaerobic, Gram-stain-positive, rod-shaped, non-haemolytic bacteria (zg-320/zg-336, zg-917/zg-910 and zg-913/zg-915) isolated from animal tissues and human faeces were found to belong to the genus based on the phylogenetic analyses of 16S rRNA gene and 262 core genes set. Based on the greatest degree of 16S rRNA similarity, zg-320/zg-336 had the highest 16S rRNA gene similarity to DSM 44353 (97.51 %), zg-917/zg-910 to DSM 44184 (98.68 %), and zg-913/zg-915 to subsp. CIP 103500 (98.79 %). The three novel type strains had a relatively high DNA G+C content (61.2–64.4 mol%), low DNA relatedness and ANI values with their respective neighbours: 23.5/72.7 %, 25.0/72.3%and 22.6/73.1 % (zg-320 vs. CIP 106629, DSM 45100 and DSM 45110); 24.4/82.3% and 23.7/81.3 % (zg-917 vs. DSM 44184 and JCB); 26.8/83.7% and 27.7/84.4 % (zg-913 vs. ATCC 700355 and subsp. CCUG 32105). The three novel species had C, C, C 9 and C ante/C 6,9 as the major cellular fatty acids; MK-8(H) in strain zg-917 and MK-9(H) in strains zg-320 and zg-913 were found to be the major respiratory quinones. For the three novel species, the detected major polar lipids included diphosphatidylglycerol, phosphatidyl inositol mannoside, phosphatidylglycerol and phosphatidylinositol, the cell-wall peptidoglycan was based on -DAP, and the whole-cell sugars mainly included ribose, arabinose and galactose. The three novel species grew optimally at 35–37 °C, 0.5 % (w/v) NaCl and pH 7.0–8.0; notably, they were tolerant of 10.5 % (w/v) NaCl. Based on the results of these comprehensive analyses, three novel species in the genus are proposed, aptly named sp. nov. (zg-320 = GDMCC 1.1719 = JCM 34106), sp. nov. (zg-917 = GDMCC 1.1707 = JCM 34094) and sp. nov. (zg-913 = GDMCC 1.1706 = JCM 34398).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005069
2021-11-30
2022-01-28
Loading full text...

Full text loading...

References

  1. Atasayar E, Zimmermann O, Spröer C, Schumann P, Groß U. Corynebacterium gottingense sp. nov., isolated from a clinical patient. Int J Syst Evol Microbiol 2017; 67:4494–4499 [View Article] [PubMed]
    [Google Scholar]
  2. Wei Y, Fang J, Xu Y, Zhao W, Cao J. Corynebacterium hadale sp. nov. Isolated from hadopelagic water of the New Britain Trench. Int J Syst Evol Microbiol 2018; 68:1474–1478 [View Article] [PubMed]
    [Google Scholar]
  3. Jani K, Khare K, Senik S, Karodi P, Vemuluri VR et al. Corynebacterium godavarianum sp. nov., isolated from the Godavari River, India. Int J Syst Evol Microbiol 2018; 68:241–247 [View Article] [PubMed]
    [Google Scholar]
  4. Nantapong N, Matsutani M, Kanchanasin P, Kataoka N, Paisrisan P et al. Corynebacterium suranareeae sp. nov., a glutamate producing bacterium isolated from soil and its complete genome-based analysis. Int J Syst Evol Microbiol 2020; 70:1903–1911 [View Article] [PubMed]
    [Google Scholar]
  5. Busse H-J, Kleinhagauer T, Glaeser SP, Spergser J, Kämpfer P et al. Classification of three Corynebacterial strains isolated from the northern bald Ibis (Geronticus eremita): Proposal of Corynebacterium choanae sp. nov., Corynebacterium pseudopelargi sp. nov., and Corynebacterium gerontici sp. nov. Int J Syst Evol Microbiol 2019; 69:2928–2935 [View Article] [PubMed]
    [Google Scholar]
  6. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article] [PubMed]
    [Google Scholar]
  7. Yu Q-L, Yan Z-F, He X, Tian F-H, Jia C-W et al. Corynebacterium defluvii sp. nov., isolated from sewage. J Microbiol 2017; 55:435–439 [View Article] [PubMed]
    [Google Scholar]
  8. Zimmermann J, Rückert C, Kalinowski J, Lipski A. Corynebacterium crudilactis sp. nov., isolated from raw cow’s milk. Int J Syst Evol Microbiol 2016; 66:5288–5293 [View Article] [PubMed]
    [Google Scholar]
  9. Jaén-Luchoro D, Gonzales-Siles L, Karlsson R, Svensson-Stadler L, Molin K et al. Corynebacterium sanguinis sp. nov., a clinical and environmental associated corynebacterium. Syst Appl Microbiol 2020; 43:126039 [View Article] [PubMed]
    [Google Scholar]
  10. Ballas P, Rückert C, Wagener K, Drillich M, Kämpfer P et al. Corynebacterium urogenitale sp. nov. isolated from the genital tract of a cow. Int J Syst Evol Microbiol 2020; 70:3625–3632 [View Article] [PubMed]
    [Google Scholar]
  11. Kämpfer P, Jerzak L, Bochenski M, Kasprzak M, Wilharm G et al. Corynebacterium pelargi sp. nov., isolated from the trachea of white stork nestlings. Int J Syst Evol Microbiol 2015; 65:1415–1420 [View Article] [PubMed]
    [Google Scholar]
  12. Fernández-Garayzábal JF, Vela AI, Egido R, Hutson RA, Lanzarot MP et al. Corynebacterium ciconiae sp. nov., isolated from the trachea of black storks (Ciconia nigra. Int J Syst Evol Microbiol 2004; 54:2191–2195 [View Article] [PubMed]
    [Google Scholar]
  13. Kämpfer P, Jerzak L, Wilharm G, Golke J, Busse H-J et al. Description of Corynebacterium trachiae sp. nov., isolated from a white stork (Ciconia ciconia). Int J Syst Evol Microbiol 2015; 65:784–788 [View Article] [PubMed]
    [Google Scholar]
  14. Zhou J, Xu M, Guo W, Yang J, Pu J et al. Corynebacterium lizhenjunii sp. nov., isolated from the respiratory tract of Marmota himalayana, and Corynebacterium qintianiae sp. nov., isolated from the lung tissue of Pseudois nayaur. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  15. Dangel A, Berger A, Rau J, Eisenberg T, Kämpfer P et al. Corynebacterium silvaticum sp. nov., a unique group of NTTB corynebacteria in wild boar and roe deer. Int J Syst Evol Microbiol 2020; 70:3614–3624 [View Article] [PubMed]
    [Google Scholar]
  16. Zhang B, Jiang Y, Li Z, Wang F, Wu X-Y. Recent progress on chemical production from non-food renewable feedstocks using Corynebacterium glutamicum. Front Bioeng Biotechnol 2020; 8:606047 [View Article] [PubMed]
    [Google Scholar]
  17. Lagier J-C, Armougom F, Million M, Hugon P, Pagnier I et al. Microbial culturomics: Paradigm shift in the human gut microbiome study. Clin Microbiol Infect 2012; 18:1185–1193 [View Article] [PubMed]
    [Google Scholar]
  18. Bai X, Lu S, Yang J, Jin D, Pu J et al. Precise fecal microbiome of the herbivorous Tibetan antelope inhabiting high-altitude alpine plateau. Front Microbiol 2018; 9:2321 [View Article] [PubMed]
    [Google Scholar]
  19. Meng X, Lu S, Yang J, Jin D, Wang X et al. Metataxonomics reveal vultures as a reservoir for Clostridium perfringens. Emerg Microbes Infect 2017; 6:e9 [View Article] [PubMed]
    [Google Scholar]
  20. Yang J, Pu J, Lu S, Bai X, Wu Y et al. Species-level analysis of human gut microbiota with metataxonomics. Front Microbiol 2020; 11:2029 [View Article] [PubMed]
    [Google Scholar]
  21. Liu S, Feng J, Pu J, Xu X, Lu S et al. Genomic and molecular characterisation of Escherichia marmotae from wild rodents in Qinghai-Tibet Plateau as a potential pathogen. Sci Rep 2019; 9:10619 [View Article] [PubMed]
    [Google Scholar]
  22. Jin D, Chen C, Li L, Lu S, Li Z et al. Dynamics of fecal microbial communities in children with diarrhea of unknown etiology and genomic analysis of associated streptococcus lutetiensis. BMC Microbiol 2013; 13:141 [View Article] [PubMed]
    [Google Scholar]
  23. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: A taxonomically united database of 16s rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  24. Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using Clustalw and Clustalx. Curr Protoc Bioinformatics 2002; Chapter 2:Unit 2.3 [View Article] [PubMed]
    [Google Scholar]
  25. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  26. Zhang G, Lai X-H, Yang J, Jin D, Pu J et al. Luteimonas chenhongjianii, a novel species isolated from rectal contents of Tibetan Plateau pika (Ochotona curzoniae. Int J Syst Evol Microbiol 2020; 70:3186–3193 [View Article] [PubMed]
    [Google Scholar]
  27. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16s: An algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  28. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  29. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012; 28:3150–3152 [View Article] [PubMed]
    [Google Scholar]
  30. Price MN, Dehal PS, Arkin AP. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article] [PubMed]
    [Google Scholar]
  31. Huson DH, Scornavacca C. Dendroscope 3: An interactive tool for rooted phylogenetic trees and networks. Syst Biol 2012; 61:1061–1067 [View Article] [PubMed]
    [Google Scholar]
  32. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  33. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  34. Zhang G, Yang J, Lai X-H, Lu S, Jin D et al. Neisseria chenwenguii sp. nov. isolated from the rectal contents of a plateau pika (Ochotona curzoniae. Antonie van Leeuwenhoek 2019; 112:1001–1010 [View Article] [PubMed]
    [Google Scholar]
  35. Riegel P, de Briel D, Prévost G, Jehl F, Monteil H et al. Taxonomic study of Corynebacterium group ANF-1 strains: Proposal of Corynebacterium afermentans sp. nov. Containing the subspecies C. afermentans subsp. afermentans subsp. nov. and C. afermentans subsp. lipophilum subsp. nov. Int J Syst Bacteriol 1993; 43:287–292 [View Article] [PubMed]
    [Google Scholar]
  36. Diop K, Nguyen TT, Delerce J, Armstrong N, Raoult D et al. Corynebacterium fournierii sp. nov., isolated from the female genital tract of a patient with bacterial vaginosis. Antonie van Leeuwenhoek 2018; 111:1165–1174 [View Article] [PubMed]
    [Google Scholar]
  37. Boxberger M, Antezack A, Magnien S, Cassir N, La Scola B. Draft genome and description of Corynebacterium haemomassiliense strain Marseille-Q3615T sp. nov., a new bacterium isolated from a 59-year-old man with chronic obstructive pulmonary disease symptoms. New Microbes New Infect 2020; 38:100801 [View Article] [PubMed]
    [Google Scholar]
  38. Funke G, Ramos CP, Collins MD. Corynebacterium coyleae sp. nov., isolated from human clinical specimens. Int J Syst Bacteriol 1997; 47:92–96 [View Article] [PubMed]
    [Google Scholar]
  39. Funke G, Lawson PA, Collins MD. Corynebacterium mucifaciens sp. nov., an unusual species from human clinical material. Int J Syst Bacteriol 1997; 47:952–957 [View Article] [PubMed]
    [Google Scholar]
  40. Liu Q, Wu K, Fan G, Bai X, Yang X et al. Corynebacterium anserum sp. nov., isolated from the faeces of greater white-fronted geese (Anser albifrons) at Poyang Lake, PR China. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005069
Loading
/content/journal/ijsem/10.1099/ijsem.0.005069
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error