1887

Abstract

An aerobic, Gram-stain-positive, endospore-forming, rod-shaped and moderately halophilic strain SKP4-6, was isolated from shrimp paste () collected from Samut Sakhon Province, Thailand. Phylogenetic analysis revealed that strain SKP4-6 belonged to the genus and was most closely related to JCM 11546 (98.6 %), KCTC 3788 (98.6 %) and KCTC 3957 (98.6 %) based on 16S rRNA gene sequence similarity. The digital DNA–DNA hybridization (dDDH) and average nucleotide identity (ANI) values between strain SKP4-6 and its related species were 18.2–19.3 % and 69.84–84.51 %, respectively, which were lower than the threshold recommended for species delineation. The strain grew optimally at 30–40 °C, at pH 7.0 and with 10–15 % (w/v) NaCl. It contained -Orn-Asp in the cell wall peptidoglycan. The DNA G+C content was 44.8 mol%. The major fatty acids were iso-C, anteiso-C and anteiso-C. The predominant isoprenoid quinone was MK-7. Phosphatidylglycerol and diphosphatidylglycerol were present as major polar lipids. Based on this polyphasic approach, digital DNA–DNA relatedness and ANI values, strain SKP4-6 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SKP4-6 (=JCM 32624=TISTR 2595).

Funding
This study was supported by the:
  • National Research Council of Thailand (Award GB-A_60_019_33_04)
    • Principle Award Recipient: SomboonTanasupawat
  • Thailand Graduate Institute of Science and Technology, TGIST (Award TG-22-09-58-036D)
    • Principle Award Recipient: AuttapornBooncharoen
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005054
2021-11-26
2024-04-19
Loading full text...

Full text loading...

References

  1. Claus D, Fahmy F, Rolf HJ, Tosunoglu N. Sporosarcina halophila sp. nov., an obligate, slightly halophilic bacterium from salt marsh soils. Syst Appl Microbiol 1983; 4:496–506 [View Article] [PubMed]
    [Google Scholar]
  2. Spring S, Ludwig W, Marquez MC, Ventosa A, Schleifer KH. Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp. nov., and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int J Syst Bacteriol 1996; 46:492–496 [View Article]
    [Google Scholar]
  3. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article]
    [Google Scholar]
  4. Yoon JH, Kang KH, Oh TK, Park YH. Halobacillus locisalis sp. nov., a halophilic bacterium isolated from a marine solar saltern of the Yellow Sea in Korea. Extremophiles 2004; 8:23–28 [View Article] [PubMed]
    [Google Scholar]
  5. Yoon JH, Kang KH, Oh TK, Park YH. Halobacillus yeomjeoni sp. nov., isolated from a marine solar saltern in Korea. Int J Syst Evol Microbiol 2005; 55:2413–2417 [View Article] [PubMed]
    [Google Scholar]
  6. Yoon JH, Kang SJ, Jung YT, Oh TK. Halobacillus campisalis sp. nov., containing meso-diaminopimelic acid in the cell-wall peptidoglycan and emended description of the genus Halobacillus. Int J Syst Evol Microbiol 2007; 57:2021–2025 [View Article] [PubMed]
    [Google Scholar]
  7. Yoon JH, Kang SJ, Oh TK. Halobacillus seohaensis sp. nov., isolated from a marine solar saltern in Korea. Int J Syst Evol Microbiol 2008; 58:622–627 [View Article] [PubMed]
    [Google Scholar]
  8. Chen YG, Zhang YQ, Liu ZX, Zhuang DC, Klenk HP. Halobacillus salsuginis sp. nov., a moderately halophilic bacterium from a subterranean brine. Int J Syst Evol Microbiol 2009; 59:2505–2509 [View Article] [PubMed]
    [Google Scholar]
  9. Kim SJ, Lee JC, Han SI, Whang KS. Halobacillus sediminis sp. nov., a moderately halophilic bacterium isolated from a solar saltern sediment. Int J Syst Evol Microbiol 2015; 65:4434–4440 [View Article] [PubMed]
    [Google Scholar]
  10. Kim SJ, Lee JC, Han SI, Whang KS. Halobacillus salicampi sp. nov., a moderately halophilic bacterium isolated from a solar saltern sediment. Antonie van Leeuwenhoek 2016; 109:713–720 [View Article] [PubMed]
    [Google Scholar]
  11. Amoozegar MA, Malekzadeh F, Malik KA, Schumann P, Spröer C. Halobacillus karajensis sp. nov., a novel moderate halophile. Int J Syst Evol Microbiol 2003; 53:1059–1063 [View Article] [PubMed]
    [Google Scholar]
  12. Wang K, Zhang L, Yang Y, Pan Y, Meng L. Halobacillus andaensis sp. nov., a moderately halophilic bacterium isolated from saline and alkaline soil. Int J Syst Evol Microbiol 2015; 65:1908–1914 [View Article] [PubMed]
    [Google Scholar]
  13. Yoon JH, Kang KH, Park YH. Halobacillus salinus sp. nov., isolated from a salt lake on the coast of the East Sea in Korea. Int J Syst Evol Microbiol 2003; 53:687–693 [View Article] [PubMed]
    [Google Scholar]
  14. Liu WY, Zeng J, Wang L, Dou YT, Yang SS. Halobacillus dabanensis sp. nov., and Halobacillus aidingensis sp. nov., isolated from salt lakes in Xinjiang, China. Int J Syst Evol Microbiol 2005; 55:1991–1996 [View Article] [PubMed]
    [Google Scholar]
  15. Romano I, Finore I, Nicolaus G, Huertas FJ, Lama L. Halobacillus alkaliphilus sp. nov., a halophilic bacterium isolated from a salt lake in Fuente de Piedra, southern Spain. Int J Syst Evol Microbiol 2008; 58:886–890 [View Article] [PubMed]
    [Google Scholar]
  16. Hua NP, Kanekiyo A, Fujikura K, Yasuda H, Nagamura T. Halobacillus profundi sp. nov. and Halobacillus kuroshimensis sp. nov., moderately halophilic bacteria isolated from a deep-sea methane cold seep. Int J Syst Evol Microbiol 2007; 57:1243–1249 [View Article] [PubMed]
    [Google Scholar]
  17. Soto-Ramírez N, Sánchez-Porro C, Rosas-Padilla S, Almodóvar K, Jiménez G. Halobacillus mangrovi sp. nov., a moderately halophilic bacterium isolated from the black mangrove Avicennia germinans. Int J Syst Evol Microbiol 2008; 58:125–130 [View Article] [PubMed]
    [Google Scholar]
  18. An SY, Kanoh K, Kasai H, Yokota Y. Halobacillus faecis sp. nov., a spore-forming bacterium isolated from a mangrove area on Ishigaki Island, Japan. Int J Syst Evol Microbiol 2007; 57:2476–2479 [View Article] [PubMed]
    [Google Scholar]
  19. Chen YG, Liu ZX, Zhang YQ, Zhang YX, Tang SK. Halobacillus naozhouensis sp. nov., a moderately halophilic bacterium isolated from a sea anemone. Antonie van Leeuwenhoek 2009; 96:99–107 [View Article] [PubMed]
    [Google Scholar]
  20. Claus D, Berkeley RCW. Genus Bacillus Cohn 1972, 174AL. Sneath PHA, Mair NA, Sharpe ME, Holt JG. eds In Bergey’s Manual of Systematic Bacteriology Baltimore, MD: The Williams and Wilkins Co; 1986 pp 1105–1139
    [Google Scholar]
  21. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article] [PubMed]
    [Google Scholar]
  22. Liu M, Cui Y, Chen Y, Lin X, Huang H. Diversity of Bacillus-like bacterial community in the sediments of the Bamenwan mangrove wetland in Hainan, China. Can J Microbiol 2017; 63:238–245 [View Article] [PubMed]
    [Google Scholar]
  23. Mukhtar S, Mehnaz S, Mirza MS, Mirza BS, Malik KA. Diversity of Bacillus-like bacterial community in the rhizospheric and non-rhizospheric soil of halophytes (Salsola stocksii and Atriplex amnicola), and characterization of osmoregulatory genes in halophilic Bacilli. Can J Microbiol 2018; 64:567–579 [View Article] [PubMed]
    [Google Scholar]
  24. Seck EH, Senghor B, Merhej V, Bachar D, Cadoret F. Salt in stools is associated with obesity, gut halophilic microbiota and Akkermansia muciniphila depletion in humans. Int J Obes 2019; 43:862–871 [View Article]
    [Google Scholar]
  25. Gao M, Zhang Z, Dong Y, Song Z, Dai H. Responses of bacterial communities in wheat rhizospheres in different soils to di-n-butyl and di (2-ethylhexyl) phthalate contamination. Geoderma 2020; 362:114126
    [Google Scholar]
  26. Panosyan H, Hakobyan A, Birkeland NK, Trchounian A. Bacilli community of saline-alkaline soils from the Ararat Plain (Armenia) assessed by molecular and culture-based methods. Syst Appl Microbiol 2018; 41:232–240S0723-2020(17)30181-9 [View Article] [PubMed]
    [Google Scholar]
  27. Logan NA, Berge O, Bishop AH, Busse HJ, de Vos P. Proposed minimal standards or describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article] [PubMed]
    [Google Scholar]
  28. Booncharoen A, Visessanguan W, Kuncharoen N, Yiamsombut S, Santiyanont P. Lentibacillus lipolyticus sp. nov., a moderately halophilic bacterium isolated from shrimp paste (Ka-pi. Int J Syst Evol Microbiol 2019; 69:3529–3536 [View Article] [PubMed]
    [Google Scholar]
  29. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  30. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  31. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  32. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  33. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  34. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  35. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  36. Leggett RM, Ramirez-Gonzalez RH, Clavijo BJ, Waite D, Davey RP. Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics. Front Genet 2013; 4:288 [View Article] [PubMed]
    [Google Scholar]
  37. Chen S, Huang T, Zhou Y, Han Y, Xu M. AfterQC: automatic filtering, trimming, error removing and quality control for fastq data. BMC Bioinformatics 2017; 18:80 [View Article] [PubMed]
    [Google Scholar]
  38. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  39. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  40. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  41. Parks D, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  42. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article]
    [Google Scholar]
  43. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  44. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article] [PubMed]
    [Google Scholar]
  45. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019; 20:238 [View Article] [PubMed]
    [Google Scholar]
  46. Bardou P, Mariette J, Escudie F, Djemiel C, Klopp C. jvenn: an interactive Venn diagram viewer. BMV Bioinformatics 2014; 15:15–293 [View Article]
    [Google Scholar]
  47. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  48. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  49. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60–1460 [View Article] [PubMed]
    [Google Scholar]
  50. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics 2008; 9:75 [View Article]
    [Google Scholar]
  51. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  52. Stackebrandt E, Goebel BM. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in Bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  53. Ritcher M, Rosselló-Móra R. Shifting the genomics gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  54. Goris J, Konstantinidis K, Klappenbach J, Coenye T, Vandamme P. DNA-DNA hybridization values and their relationship to whole genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  55. Konstantinidis KT, Tiedje JM. Trends between gene content and genome size in prokaryotic species with larger genomes. Proc Natl Acad Sci USA 2004; 101:3160–3165 [View Article] [PubMed]
    [Google Scholar]
  56. Stackebrandt E, Goebel BM. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in Bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  57. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  58. Wargo MJ. Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa. Appl Environ Microbiol 2013; 79:2112–2120 [View Article] [PubMed]
    [Google Scholar]
  59. Köcher S, Breitenbach J, Müller V, Sandmann G. Structure, function and biosynthesis of carotenoids in the moderately halophilic bacterium Halobacillus halophilus. Arch Microbiol 2009; 191:95–104 [View Article]
    [Google Scholar]
  60. Dussault HP. An improved technique for staining red halophilic bacteria. J Bacteriol 1955; 70:484–485 [View Article] [PubMed]
    [Google Scholar]
  61. Forbes L. Rapid flagella stain. J Clin Microbiol 1981; 13:807–809 [View Article] [PubMed]
    [Google Scholar]
  62. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963; 85:1183–1184 [View Article] [PubMed]
    [Google Scholar]
  63. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI 426 Technical Note 101. Newark, NJ: DEMIDI Inc; 1990
    [Google Scholar]
  64. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–206
    [Google Scholar]
  65. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36 [View Article]
    [Google Scholar]
  66. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005054
Loading
/content/journal/ijsem/10.1099/ijsem.0.005054
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error