1887

Abstract

A Gram-stain-negative, obligatory anaerobic spirochaete (RCC2812) was isolated from a faecal sample obtained from an individual residing in a remote Amazonian community in Peru. The bacterium showed highest 16S rRNA gene sequence similarity to the pig intestinal spirochete (89.48 %). Average nucleotide identity values between strain RCC2812 and all available genomes from validated type strains were all <73 %, thus clearly lower than the species delineation threshold. The DNA G+C content of RCC2812 was 41.24 mol%. Phenotypic characterization using the API-ZYM and API 20A systems confirmed the divergent position of this bacterium within the genus . Strain RCC2812 could be differentiated from the phylogenetically most closely related by the presence of alkaline phosphatase and α -glucosidase activities. Unlike , strain RCC2812 grew equally well with or without serum. Strain RCC2812 is the first commensal isolated from the human faecal microbiota of remote populations, and based on the collected data represents a novel species for which the name sp. nov. is proposed. The type strain is RCC2812 (=LMG 31794=CIP 111910).

Keyword(s): faeces , gut , human , microbiome , spirochaete and Treponema
Funding
This study was supported by the:
  • vlaams instituut voor biotechnologie
    • Principle Award Recipient: JeroenRaes
  • fonds wetenschappelijk onderzoek (Award 1221620N)
    • Principle Award Recipient: RodrigoBacigalupe
  • fonds wetenschappelijk onderzoek (Award 1234321N)
    • Principle Award Recipient: RaulTito Tadeo
  • fonds wetenschappelijk onderzoek (Award 11ZF416N)
    • Principle Award Recipient: ClaireBelkhou
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005050
2021-10-21
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/10/ijsem005050.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005050&mimeType=html&fmt=ahah

References

  1. Staton GJ, Newbrook K, Clegg SR, Birtles RJ, Evans NJ et al. Treponema rectale sp. nov., a spirochete isolated from the bovine rectum. Int J Syst Evol Microbiol 2017; 67:2470–2475 [View Article]
    [Google Scholar]
  2. Forrestel AK, Kovarik CL, Katz KA. Sexually acquired syphilis: Historical aspects, microbiology, epidemiology, and clinical manifestations. J Am Acad Dermatol 2020; 82:1–14 [View Article] [PubMed]
    [Google Scholar]
  3. Asai Y, Jinno T, Igarashi H, Ohyama Y, Ogawa T. Detection and quantification of oral treponemes in subgingival plaque by real-time PCR. J Clin Microbiol 2002; 40:3334–3340 [View Article] [PubMed]
    [Google Scholar]
  4. Demirkan I, Carter SD, Winstanley C, Bruce KD, McNAIR NM et al. Isolation and characterisation of a novel Spirochaete from severe virulent ovine foot rot. J Med Microbiol 2001; 50:1061–1068 [View Article]
    [Google Scholar]
  5. Schnorr SL, Hofman CA, Netshifhefhe SR, Duncan FD, Honap TP et al. Taxonomic features and comparisons of the gut microbiome from two edible fungus-farming termites (Macrotermes falciger; M. natalensis) harvested in the Vhembe district of Limpopo, South Africa. BMC Microbiol 2019; 19: [View Article]
    [Google Scholar]
  6. Cwyk WM, Canale-Parola E. Treponema succinifaciens sp. nov., an anaerobic spirochete from the swine intestine. Arch Microbiol 1979; 122:231–239 [View Article] [PubMed]
    [Google Scholar]
  7. Newbrook K, Staton GJ, Clegg SR, Birtles RJ, Carter SD et al. Treponema ruminis sp. nov., a spirochaete isolated from the bovine rumen. Int J Syst Evol Microbiol 2017; 67:1349–1354 [View Article]
    [Google Scholar]
  8. Manara S, Asnicar F, Beghini F, Bazzani D, Cumbo F et al. Microbial genomes from non-human primate gut metagenomes expand the primate-associated bacterial tree of life with over 1000 novel species. Genome Biol 2019; 20:299 [View Article] [PubMed]
    [Google Scholar]
  9. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 2010; 107:14691–14696 [View Article] [PubMed]
    [Google Scholar]
  10. Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C et al. Gut microbiome of the Hadza hunter-gatherers. Nat Commun 2014; 5:3654 [View Article] [PubMed]
    [Google Scholar]
  11. Obregon-Tito AJ, Tito RY, Metcalf J, Sankaranarayanan K, Clemente JC et al. Subsistence strategies in traditional societies distinguish gut microbiomes. Nat Commun 2015; 6:6505 [View Article] [PubMed]
    [Google Scholar]
  12. Angelakis E, Bachar D, Yasir M, Musso D, Djossou F et al. Treponema species enrich the gut microbiota of traditional rural populations but are absent from urban individuals. New microbes new Infect 2019; 27:14–21 [View Article] [PubMed]
    [Google Scholar]
  13. Rampelli S, Schnorr SL, Consolandi C, Turroni S, Severgnini M et al. Metagenome sequencing of the hadza hunter-gatherer gut microbiota. Curr Biol 2015; 25:1682–1693 [View Article] [PubMed]
    [Google Scholar]
  14. Tito RY, Knights D, Metcalf J, Obregon-Tito AJ, Cleeland L et al. Insights from characterizing extinct human gut microbiomes. PLoS One 2012; 7:e51146 [View Article] [PubMed]
    [Google Scholar]
  15. Obregon-Tito AJ, Tito RY, Metcalf J, Sankaranarayanan K, Clemente JC et al. Subsistence strategies in traditional societies distinguish gut microbiomes. Nat Commun 2015; 6:6505 [View Article] [PubMed]
    [Google Scholar]
  16. Stamm L, Bergen HL, Shangraw KA. Natural rifampin resistance in Treponema spp. correlates with presence of N531 in RpoB rif cluster i. Antimicrob Agents Chemother 2001; 45:2973–2974 [View Article] [PubMed]
    [Google Scholar]
  17. Evans NJ, Brown JM, Demirkan I, Murray RD, Vink WD et al. Three unique groups of spirochetes isolated from digital dermatitis lesions in UK cattle. Vet Microbiol 2008; 130:141–150 [View Article] [PubMed]
    [Google Scholar]
  18. Evans NJ, Brown JM, Murray RD, Getty B, Birtles RJ et al. Characterization of novel bovine gastrointestinal tract Treponema isolates and comparison with bovine digital dermatitis treponemes. Appl Environ Microbiol 2011; 77:138–147 [View Article] [PubMed]
    [Google Scholar]
  19. Parola P, Roux V, Camicas JL, Baradji I, Brouqui P et al. Detection of ehrlichiae in African ticks by polymerase chain reaction. Trans R Soc Trop Med Hyg 2000; 94:707–708 [View Article] [PubMed]
    [Google Scholar]
  20. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  21. Lee I, Kim YO, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  22. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  23. Han C, Gronow S, Teshima H, Lapidus A, Nolan M et al. Complete genome sequence of Treponema succinifaciens type strain (6091). Stand Genomic Sci 2011; 4:361–370 [View Article] [PubMed]
    [Google Scholar]
  24. Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M et al. A unified sequence catalogue of over 280000 genomes obtained from the human gut microbiome. bioRxiv 2019762682 [View Article]
    [Google Scholar]
  25. Pehrsson EC, Tsukayama P, Patel S, Mejía-Bautista M, Sosa-Soto G et al. Interconnected microbiomes and resistomes in low-income human habitats. Nature 2016; 533:212–216 [View Article] [PubMed]
    [Google Scholar]
  26. Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N et al. Extensive unexplored human microbiome diversity revealed by oUnexplored Human Microbiome Diversity Revealed by Over 150000 genomes from metagenomes spanning age, geography, and lifeGenomes from Metagenomes Spanning Age, Geography, and Lifestyle. Cell 2019; 176:649–662 [View Article] [PubMed]
    [Google Scholar]
  27. Cleary B, Brito IL, Huang K, Gevers D, Shea T et al. Detection of low-abundance bacterial strains in metagenomic datasets by eigengenome partitioning. Nat Biotechnol 2015; 33:1053–1060 [View Article] [PubMed]
    [Google Scholar]
  28. Wyss C, Dewhirst FE, Gmür R, Thurnheer T, Xue Y et al. Treponema parvum sp. nov., a small, glucuronic or galacturonic acid-dependent oral spirochaete from lesions of human periodontitis and acute necrotizing ulcerative gingivitis. Int J Syst Evol Microbiol 2001; 51:955–962 [View Article] [PubMed]
    [Google Scholar]
  29. Nordhoff M, Taras D, Macha M, Tedin K, Busse HJ et al. Treponema berlinense sp. nov. and Treponema porcinum sp. nov., novel spirochaetes isolated from porcine faeces. Int J Syst Evol Microbiol 2005; 55:1675–1680 [View Article] [PubMed]
    [Google Scholar]
  30. Evans NJ, Brown JM, Demirkan I, Murray RD, Birtles RJ et al. Treponema pedis sp. nov., a spirochaete isolated from bovine digital dermatitis lesions. Int J Syst Evol Microbiol 2009; 59:987–991 [View Article] [PubMed]
    [Google Scholar]
  31. Schrank K, Choi BK, Grund S, Moter A, Heuner K et al. Treponema brennaborense sp. nov., a novel spirochaete isolated from a dairy cow suffering from digital dermatitis. Int J Syst Bacteriol 1999; 49 Pt 1:43–50 [View Article] [PubMed]
    [Google Scholar]
  32. Wyss C, Choi BK, Schupbach P, Guggenheim B, Gobel UB. Treponema maltophilum sp. nov., a small oral spirochete isolated from human periodontal lesions. Int J Syst Bacteriol 1996; 46:745–752 [View Article] [PubMed]
    [Google Scholar]
  33. Wyss C, Choi BK, Schüpbach P, Guggenheim B, Göbel UB. Treponema amylovorum sp. nov., a saccharolytic spirochete of medium size isolated from an advanced human periodontal lesion. Int J Syst Bacteriol 1997; 47:842–845 [View Article] [PubMed]
    [Google Scholar]
  34. Wyss C, Moter A, Choi B-K, Dewhirst FE, Xue Y et al. Treponema putidum sp. nov., a medium-sized proteolytic spirochaete isolated from lesions of human periodontitis and acute necrotizing ulcerative gingivitis. Int J Syst Evol Microbiol 2004; 54:1117–1122 [View Article]
    [Google Scholar]
  35. Wyss C, Choi BK, Schüpbach P, Moter A, Guggenheim B et al. Treponema lecithinolyticum sp. nov., a small saccharolytic spirochaete with phospholipase A and C activities associated with periodontal diseases. Int J Syst Bacteriol 1999; 49 Pt 4:1329–1339 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005050
Loading
/content/journal/ijsem/10.1099/ijsem.0.005050
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error