1887

Abstract

A bacterial strain designated 32A was isolated from the skin of an Anderson’s salamander () and subjected to a comprehensive taxonomic study. The strain was Gram-stain-negative, rod-shaped, non-motile, oxidase- and urease-negative, and catalase-positive. 16S rRNA gene sequence comparisons placed the strain in the genus with highest sequence similarities to A4T-83 (95.2%), CB-286403 (95.1%) and E100 (94.9%). Genomic sequence analysis revealed a size of 5.3 Mbp, a G+C-content of 62.2 mol% and highest ANI values with (71.2%), (71.4%) and (69.5%). In the polyamine pattern, 1,3-diaminopropane and spermidine were predominant. The diagnostic diamino acid of the peptidoglycan was -diaminopimelic acid. The quinone system was composed of the major menaquinones MK-9 and MK-10. Major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, the unidentified aminolipid AL2, the unidentified phospholipid PL2 and the unidentified aminophospholipid APL1. The fatty acid profile contained major amounts of iso-C, iso-C, C and C ω9. In addition, C, C anteiso-C, summed feature 2 (C 3OH and/or iso-C I), and the hydroxylated fatty acids iso-C 3OH, iso-C 3OH and C 3-OH were detected. Physiologically, strain 32A is distinguishable from its next relatives. Based on phylogenetic, genomic, physiological and chemotaxonomic data, strain 32A represents a novel species of the genus for which we propose the name sp. nov. The type strain is 32A (=CCM 9141=LMG 32214).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005043
2021-10-08
2024-03-28
Loading full text...

Full text loading...

References

  1. Yoon J, Matsuo Y, Adachi K, Nozawa M, Matsuda S et al. Description of Persicirhabdus sediminis gen. nov., sp. nov., Roseibacillus ishigakijimensis gen. nov., sp. nov., Roseibacillus ponti sp. nov., Roseibacillus persicicus sp. nov., Luteolibacter pohnpeiensis gen. nov., sp. nov. and Luteolibacter algae sp. nov., six marine members of the phylum “Verrucomicrobia”, and emended descriptions of the class Verrucomicrobiae, the order Verrucomicrobiales and the family Verrucomicrobiaceae. Int J Syst Evol Microbiol 2008; 58:998–1007 [View Article] [PubMed]
    [Google Scholar]
  2. Kim M, Pak S, Rim S, Ren L, Jiang F et al. Luteolibacter arcticus sp. nov., isolated from high Arctic tundra soil, and emended description of the genus Luteolibacter. Int J Syst Evol Microbiol 2015; 65:1922–1928 [View Article] [PubMed]
    [Google Scholar]
  3. Glaeser SP, Galatis H, Martin K, Kämpfer P. Luteolibacter cuticulihirudinis sp. nov., isolated from Hirudo medicinalis. Antonie van Leeuwenhoek 2012; 102:319–324 [View Article] [PubMed]
    [Google Scholar]
  4. Zhang C, Dong B, Wang R, Su Y, Han S et al. Luteolibacter flavescens sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2017; 67:729–735 [View Article] [PubMed]
    [Google Scholar]
  5. Pascual J, García-López M, González I, Genilloud O. Luteolibacter gellanilyticus sp. nov., a gellan-gum-degrading bacterium of the phylum Verrucomicrobia isolated from miniaturized diffusion chambers. Int J Syst Evol Microbiol 2017; 67:3951–3959 [View Article] [PubMed]
    [Google Scholar]
  6. Jiang F, Li W, Xiao M, Dai J, Kan W et al. Luteolibacter luojiensis sp. nov., isolated from Arctic tundra soil, and emended description of the genus Luteolibacter. Int J Syst Evol Microbiol 2012; 62:2259–2263 [View Article] [PubMed]
    [Google Scholar]
  7. Dahal RH, Chaudhary DK, Kim D-U, Kim J. Luteolibacter luteus sp. nov., isolated from stream bank soil. Arch Microbiol 2021; 203:377–282 [View Article] [PubMed]
    [Google Scholar]
  8. Park J, Baek GS, Woo SG, Lee J, Yang J et al. Luteolibacter yonseiensis sp. nov., isolated from activated sludge using algal metabolites. Int J Syst Evol Microbiol 2013; 63:1891–1895 [View Article] [PubMed]
    [Google Scholar]
  9. Moaledj K. Comparison of Gram-staining and alternate methods, KOH test and aminopeptidase activity in aquatic bacteria: their application to numerical taxonomy. Journal of Microbiological Methods 1986; 5:303–310 [View Article]
    [Google Scholar]
  10. Kämpfer P, Steiof M, Dott W. Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991; 21:227–243 [View Article] [PubMed]
    [Google Scholar]
  11. Lane DJ. 16S/23S rRNA sequencing. Stackebrandt E, Goodfellow M. eds In Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp 115–175
    [Google Scholar]
  12. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  13. Felsenstein J. PHYLIP (Phylogeny Inference Package) Version 3.695 Seattle, WA: Department of Genome Sciences, University of Washington; 2013
    [Google Scholar]
  14. Hennig-Pauka I, Sudendey C, Kleinschmidt S, Ruppitsch W, Loncaric I et al. Swine conjunctivitis associated with a novel mycoplasma species closely related to Mycoplasma hyorhinis.. Pathogens 2021; 10:13
    [Google Scholar]
  15. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  16. Lee I, Chalita M, Ha SM, Na SI, Yoon SH et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  17. Richter M, Rosselló-Móra R, Glöckner FO, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  18. Wattam AR, Gabbard JL, Shukla M, Sobral BW. Comparative genomic analysis at the PATRIC, a bioinformatic resource center. Methods Mol Biol 2014; 1197:287–308 [View Article] [PubMed]
    [Google Scholar]
  19. Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  20. Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 2008; 57:758–771 [View Article] [PubMed]
    [Google Scholar]
  21. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38:101–129
    [Google Scholar]
  22. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  23. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  24. Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996; 47:39–52 [View Article]
    [Google Scholar]
  25. Stolz A, Busse H-J, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007; 57:572–576 [View Article] [PubMed]
    [Google Scholar]
  26. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988; 11:1–8 [View Article]
    [Google Scholar]
  27. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Evol Microbiol 1997; 47:698–708 [View Article]
    [Google Scholar]
  28. Kainz A, Lubitz W, Busse H-J. Genomic fingerprints, ARDRA profiles and quinone systems for classification of Pasteurella sensu stricto. Syst Appl Microbiol 2000; 23:494–503 [View Article]
    [Google Scholar]
  29. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005043
Loading
/content/journal/ijsem/10.1099/ijsem.0.005043
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error