sp. nov. isolated from surface seawater No Access

Abstract

A Gram-stain-positive and motile bacterial strain, designated IB182363, was isolated from surface seawater of the South China Sea. Cells grew at pH 5.0–9.5 (optimum, pH 7.0–8.0), 20–40 °C (optimum, 30 °C) and with 1–8 % (w/v) NaCl (optimum, 2–4 %). On the basis of 16S rRNA gene sequence analysis, strain IB182363 was affiliated to the genus and the closest phylogenetically related species was DSM18677 with 96.9 % sequence similarity. The values of whole genome average nucleotide identity analysis and digital DNA–DNA hybridization between the isolate and the closely related type strains were less than 86.3 and 25.6 %, respectively. Chemotaxonomic analysis revealed that strain IB182363 possessed -diaminopimelic acid in the cell-wall peptidoglycan and contained menaquinone MK-7 as the predominant isoprenoid quinone. The major cellular fatty acids were anteiso-C, C and iso-C. The polar lipids comprised phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified glycolipid, two unidentified aminolipids, two unidentified phospholipids and four unidentified aminophospholipids. The genomic DNA G+C content was 54.5 mol%. On the basis of the above results, strain IB182363 represents a novel species of the genus , for which we propose the name sp. nov. with the type strain IB182363 (=MCCC 1K04630=JCM 34214).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005024
2021-09-24
2024-03-28
Loading full text...

Full text loading...

References

  1. Priest FG. Genus I. Paenibacillus. De Vos P, Garrity G, Jones D, Krieg N, Ludwig W. eds In The Firmicutes, Bergey's Manual of Systematic Bacteriology, 2nd. edn Vol 2 New York, US: Springer; 2009 pp 269–296
    [Google Scholar]
  2. De Vos P, Ludwig W, Schleifer KH, Whitman WB et al. Family IV. Paenibacillaceae fam. nov. De Vos P, Garrity G, Jones D, Krieg N, Ludwig W. eds In Bergey’s Manual of Systematic Bacteriology, 2nd. edn New York: The (Firmicutes), Springer; 2009 p 269
    [Google Scholar]
  3. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997; 47:289–298 [View Article] [PubMed]
    [Google Scholar]
  4. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993; 64:253–260 [View Article] [PubMed]
    [Google Scholar]
  5. Grady EN, MacDonald J, Liu L, Richman A, Yuan Z-C. Current knowledge and perspectives of Paenibacillus: A review. Microb Cell Fact 2016; 15:203 [View Article] [PubMed]
    [Google Scholar]
  6. Ripa FA, Tong S, Cao W-D, Wang ET, Wang T et al. Paenibacillus rhizophilus sp. nov., a nitrogen-fixing bacterium isolated from the rhizosphere of wheat (Triticum aestivum L.). Int J Syst Evol Microbiol 2019; 69:3689–3695 [View Article] [PubMed]
    [Google Scholar]
  7. Ambrosini A, Sant’Anna FH, Heinzmann J, de Carvalho Fernandes G, Bach E et al. Paenibacillus helianthi sp. nov., a nitrogen fixing species isolated from the rhizosphere of Helianthus annuus L. Antonie van Leeuwenhoek 2018; 111:2463–2471 [View Article] [PubMed]
    [Google Scholar]
  8. Siddiqi MZ, Choi G-M, Choi KD, Im W. Paenibacillus azotifigens sp. nov., a novel nitrogen-fixing bacterium isolated from paddy soil. Int J Syst Evol Microbiol 2017; 67:4917–4922 [View Article] [PubMed]
    [Google Scholar]
  9. Jin H-J, Zhou Y-G, Liu H-C, Chen S-F. Paenibacillus jilunlii sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Begonia semperflorens. Int J Syst Evol Microbiol 2011; 61:1350–1355 [View Article] [PubMed]
    [Google Scholar]
  10. Hong Y-Y, Ma Y-C, Zhou Y-G, Gao F, Liu H-C et al. Paenibacillus sonchi sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sonchus oleraceus. Int J Syst Evol Microbiol 2009; 59:2656–2661 [View Article] [PubMed]
    [Google Scholar]
  11. Beneduzi A, Costa PB, Parma M, Melo IS, Bodanese-Zanettini MH et al. Paenibacillus riograndensis sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Triticum aestivum. Int J Syst Evol Microbiol 2010; 60:128–133 [View Article] [PubMed]
    [Google Scholar]
  12. Ma Y, Chen S. Paenibacillus forsythiae sp. nov., a nitrogen-fixing species isolated from rhizosphere soil of Forsythia mira. Int J Syst Evol Microbiol 2008; 58:319–323 [View Article] [PubMed]
    [Google Scholar]
  13. Ma Y, Zhang J, Chen S. Paenibacillus zanthoxyli sp. nov., a novel nitrogen-fixing species isolated from the rhizosphere of Zanthoxylum simulans. Int J Syst Evol Microbiol 2007; 57:873–877 [View Article] [PubMed]
    [Google Scholar]
  14. Ma Y, Xia Z, Liu X, Chen S. Paenibacillus sabinae sp. nov., a nitrogen-fixing species isolated from the rhizosphere soils of shrubs. Int J Syst Evol Microbiol 2007; 57:6–11 [View Article] [PubMed]
    [Google Scholar]
  15. von der Weid I, Duarte GF, van Elsas JD, Seldin L. Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int J Syst Evol Microbiol 2002; 52:2147–2153 [View Article] [PubMed]
    [Google Scholar]
  16. Elo S, Suominen I, Kämpfer P, Juhanoja J, Salkinoja-Salonen M et al. Paenibacillus borealis sp. nov., a nitrogen-fixing species isolated from spruce forest humus in Finland. Int J Syst Evol Microbiol 2001; 51:535–545 [View Article] [PubMed]
    [Google Scholar]
  17. Jin H-J, Lv J, Chen S-F. Paenibacillus sophorae sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sophora japonica. Int J Syst Evol Microbiol 2011; 61:767–771 [View Article] [PubMed]
    [Google Scholar]
  18. Lee J, Shin N-R, Jung M-J, Roh SW, Kim M-S et al. Paenibacillus oceanisediminis sp. nov. Isolated from marine sediment. Int J Syst Evol Microbiol 2013; 63:428–434 [View Article] [PubMed]
    [Google Scholar]
  19. Lee H-W, Roh SW, Yim KJ, Shin N-R, Lee J et al. Paenibacillus marinisediminis sp. nov., a bacterium isolated from marine sediment. J Microbiol 2013; 51:312–317 [View Article] [PubMed]
    [Google Scholar]
  20. Zhu J, Mo K, Zheng Z, Wang Z, Hu Y et al. Paenibacillus algicola sp. nov., a novel alginate lyase-producing marine bacterium. Int J Syst Evol Microbiol 2020; 70:5087–5092 [View Article] [PubMed]
    [Google Scholar]
  21. Shin S-K, Kim E, Yi H. Paenibacillus crassostreae sp. nov., isolated from the pacific oyster Crassostrea gigas. Int J Syst Evol Microbiol 2018; 68:58–63 [View Article] [PubMed]
    [Google Scholar]
  22. Huang X-F, Wang F-Z, Zhang W, Li J, Ling J et al. Paenibacillus abyssi sp. nov., isolated from an abyssal sediment sample from the Indian Ocean. Antonie van Leeuwenhoek 2014; 106:1089–1095 [View Article] [PubMed]
    [Google Scholar]
  23. Romanenko LA, Tanaka N, Svetashev VI, Kalinovskaya NI. Paenibacillus profundus sp. nov., a deep sediment bacterium that produces isocoumarin and peptide antibiotics. Arch Microbiol 2013; 195:247–254 [View Article] [PubMed]
    [Google Scholar]
  24. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S Ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  25. Mo K-L, Wang L, Wu Q-J, Ye L, Liu X et al. Pontibacter mangrovi sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2020; 70:4245–4249 [View Article] [PubMed]
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  27. Fitch WM. Toward defining the course of evolution: Minimum change for a specific tree topology. Systematic Zoology 1971; 20:406 [View Article]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  29. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  30. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  31. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTTK: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article] [PubMed]
    [Google Scholar]
  32. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. Jspeciesws: A web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  33. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  35. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  36. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44:D457–62 [View Article]
    [Google Scholar]
  37. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B et al. The COG database: An updated version includes eukaryotes. BMC Bioinformatics 2003; 4:41 [View Article] [PubMed]
    [Google Scholar]
  38. Priest FG. Paenibacillus. William W. eds In Bergey’s Manual of Systematics of archaea and bacteria Hoboken, UK: John Wiley & Sons, Ltd; pp 1–40
    [Google Scholar]
  39. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  40. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  41. Bhatt HB, Azmatunnisa Begum M, Chintalapati S, Chintalapati VR, Singh SP. Desertibacillus haloalkaliphilus gen. nov., sp. nov., isolated from a saline desert. Int J Syst Evol Microbiol 2017; 67:4435–4442 [View Article] [PubMed]
    [Google Scholar]
  42. Logan NA, Berge O, Bishop AH, Busse H-J, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article] [PubMed]
    [Google Scholar]
  43. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101 2001
    [Google Scholar]
  44. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods in Microbiol 1988; 19:161–207
    [Google Scholar]
  45. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  46. Schumann P. Peptidoglycan structure. Methods in Microbiology 2011; 38:101–129
    [Google Scholar]
  47. Dai X, Shi K, Wang X, Fan J, Wang R et al. Paenibacillus flagellatus sp. nov., isolated from selenium mineral soil. Int J Syst Evol Microbiol 2019; 69:183–188 [View Article] [PubMed]
    [Google Scholar]
  48. Yoon M-H, Ten LN, Im W-T. Paenibacillus ginsengarvi sp. nov., isolated from soil from ginseng cultivation. Int J Syst Evol Microbiol 2007; 57:1810–1814 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005024
Loading
/content/journal/ijsem/10.1099/ijsem.0.005024
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed