1887

Abstract

During a study of the bacterial diversity of mangrove habitats, a novel Gram-stain-negative, rod-shaped bacterium designated as SAOS 153D was isolated. Sequence alignment and molecular phylogenetic analyses based on 16S rRNA and core gene sequence of strain SAOS 153D with closely related taxa revealed a sequence identity of 99.4 % and clustering with DX5-10. The fatty acids summed feature 8 (C 7/C 6) and the lipids phosphatidylglycerol, phosphatidylethanolamine and an unknown phospholipid were the major components of the cell wall. The only ubiquinone type present was Q-10. The genomic DNA G+C content of the strain calculated from whole genome sequencing was 66.9 mol%. These chemotaxonomic and genomic characteristics supported the molecular phylogenetic analysis and placed the strain well within the radiation of the genus . The overall genome related indices using digital DNA–DNA hybridization (35.4 %) and ortho-average nucleotide identity (88.1 %) values were much lower than the recommended thresholds for species delineation, which further consolidated the novel species status of strain SAOS 153D within the genus as sp. nov. The type strain is SAOS 153D (=JCM 31345=KCTC 52280=MTCC 12749).

Keyword(s): 16S rRNA , FAME , phylogeny and SAOS 153DT
Funding
This study was supported by the:
  • Ministry of Earth Sciences (Award GAP0137)
    • Principle Award Recipient: SrinivasanKrishnamurthi
  • Department of Biotechnology, Ministry of Science and Technology (Award BT/PR7368/INF/22/177/2012)
    • Principle Award Recipient: KrishnamurthiSrinivasan
  • Council of Scientific and Industrial Research, India (Award BSC0402)
    • Principle Award Recipient: SrinivasanKrishnamurthi
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005021
2021-09-22
2024-11-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/9/ijsem005021.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005021&mimeType=html&fmt=ahah

References

  1. Dai X, Wang B-J, Yang Q-X, Jiao N-Z, Liu S-J. Yangia pacifica gen. nov., sp. nov., a novel member of the Roseobacter clade from coastal sediment of the East China Sea. Int J Syst Evol Microbiol 2006; 56:529–533 [View Article] [PubMed]
    [Google Scholar]
  2. Buchan A, González JM, Moran MA. Overview of the marine Roseobacter lineage. Appl Environ Microbiol 2005; 71:5665–5677 [View Article] [PubMed]
    [Google Scholar]
  3. Wirth JS, Whitman WB. Phylogenomic analyses of a clade within the roseobacter group suggest taxonomic reassignments of species of the genera Aestuariivita, Citreicella, Loktanella, Nautella, Pelagibaca, Ruegeria, Thalassobius, Thiobacimonas and Tropicibacter, and the proposal of six novel genera. Int J Syst Evol Microbiol 2018; 68:2393–2411 [View Article] [PubMed]
    [Google Scholar]
  4. Moran MA, Belas R, Schell MA, González JM, Sun F et al. Ecological genomics of marine roseobacters. Appl Environ Microbiol 2007; 73:4559–4569 [View Article]
    [Google Scholar]
  5. Luo H, Moran MA. Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev 2014; 78:573–587 [View Article]
    [Google Scholar]
  6. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold L-M et al. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 2020; 11:468 [View Article] [PubMed]
    [Google Scholar]
  7. Smibert RM, Krieg NR. Phenotypic characterization. Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds In Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  8. Ruijssenaars HJ, Hartmans S. Plate screening methods for the detection of polysaccharase-producing microorganisms. Appl Microbiol Biotechnol 2001; 55:143–149 [View Article] [PubMed]
    [Google Scholar]
  9. Hankin L, Zucker M, Sands DC. Improved solid medium for the detection and enumeration of pectolytic bacteria. Appl Microbiol 1971; 22:205–209 [View Article] [PubMed]
    [Google Scholar]
  10. Gupta P, Samant K, Sahu A. Isolation of cellulose degrading bacteria and determination of their cellulolytic potential. Int J Microbiol 20121–5
    [Google Scholar]
  11. Lányi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19:1–67
    [Google Scholar]
  12. Verma A, Ojha AK, Dastager SG, Natarajan R, Mayilraj S et al. Domibacillus mangrovi sp. nov. and Domibacillus epiphyticus sp. nov., isolated from marine habitats of the central west coast of India. Int J Syst Evol Microbiol 2017; 67:3063–3070 [View Article] [PubMed]
    [Google Scholar]
  13. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article] [PubMed]
    [Google Scholar]
  14. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  15. Krishnamurthi S, Bhattacharya A, Mayilraj S, Saha P, Schumann P et al. Description of Paenisporosarcina quisquiliarum gen. nov., sp. nov., and reclassification of Sporosarcina macmurdoensis Reddy et al. 2003 as Paenisporosarcina macmurdoensis comb. nov. Int J Syst Evol Microbiol 2009; 59:1364–1370 [View Article] [PubMed]
    [Google Scholar]
  16. Ojha AK, Verma A, Pal Y, Bhatt D, Mayilraj S et al. Marinomonas epiphytica sp. nov., isolated from a marine intertidal macroalga. Int J Syst Evol Microbiol 2017; 67:2746–2751 [View Article] [PubMed]
    [Google Scholar]
  17. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  18. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  19. Pal Y, Mayilraj S, Paul M, Schumann P, Krishnamurthi S. Indiicoccus explosivorum gen. nov., sp. nov., isolated from an explosives waste contaminated site. Int J Syst Evol Microbiol 2019; 69:2555–2564 [View Article] [PubMed]
    [Google Scholar]
  20. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  21. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  22. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article] [PubMed]
    [Google Scholar]
  23. Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 2013; 4:2304 [View Article] [PubMed]
    [Google Scholar]
  24. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [View Article]
    [Google Scholar]
  25. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  26. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992; 8:275–282 [View Article] [PubMed]
    [Google Scholar]
  27. Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 2021; 59:476–480 [View Article] [PubMed]
    [Google Scholar]
  28. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article] [PubMed]
    [Google Scholar]
  29. Xu L, Dong Z, Fang L, Luo Y, Wei Z et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 2019; 47:W52–W58 [View Article] [PubMed]
    [Google Scholar]
  30. Martínez-Cánovas MJ, Quesada E, Martínez-Checa F, Moral AD, Béjar V. Salipiger mucescens gen. nov., sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium isolated from hypersaline soil, belonging to the alpha-Proteobacteria. Int J Syst Evol Microbiol 2004; 54:1735–1740 [View Article] [PubMed]
    [Google Scholar]
  31. Liao H, Lin X, Li Y, Qu M, Tian Y. Reclassification of the taxonomic framework of orders Cellvibrionales, Oceanospirillales, Pseudomonadales, and Alteromonadales in class Gammaproteobacteria through phylogenomic tree analysis. mSystems 2020; 5:e00543-20 [View Article] [PubMed]
    [Google Scholar]
  32. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  33. Rosselló-Mora R, Amann R. The species concept for prokaryotes. FEMS Microbiol Rev 2001; 25:39–67 [View Article] [PubMed]
    [Google Scholar]
  34. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  35. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the ad hoc Committee on Reconciliation of Approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  36. González JM, Covert JS, Whitman WB, Henriksen JR, Mayer F et al. Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int J Syst Evol Microbiol 2003; 53:1261–1269 [View Article] [PubMed]
    [Google Scholar]
  37. Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  38. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  39. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005021
Loading
/content/journal/ijsem/10.1099/ijsem.0.005021
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error