1887

Abstract

Four bacterial strains (LJ126/S18 and Z-34/S20) recovered from faecal samples of Tibetan antelopes on the Qinghai–Tibet Plateau of China were analysed using a polyphasic approach. All four isolates were aerobic, short rod-shaped, non-motile, Gram-stain-positive, acid-fast and fast-growing. Phylogenetic analyses based upon 16S rRNA and whole-genome sequences showed that the two pair of strains formed two distinct branches within the evolutionary radiation of the genus . Strains LJ126/S18 and Z-34/S20 were most closely related to CCUG 37667, NCTC 10437, DSM 44605, JCM 15658, JCM 30395, JCM 6373 and JCM 13392, but readily distinguished from the known species by a combination of chemotaxonomic and phenotypic features and by low average nucleotide identity values (74.4–84.9 %). Consequently, the two strain pairs are considered to represent different novel species of for which the names sp. nov. and sp. nov. are proposed, with LJ126 (=CGMCC 1.1992=KCTC 49535) and Z-34 (=CGMCC 1.1993=DSM 106172) as the respective type strains.

Funding
This study was supported by the:
  • research units of discovery of unknown bacteria and function (Award 2018RU010)
    • Principle Award Recipient: JianguoXu
  • state key r&d program of china (Award 2019YFC1200505)
    • Principle Award Recipient: JingYang
  • state key r&d program of china (Award 2019YFC1200500)
    • Principle Award Recipient: JingYang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005019
2021-12-08
2022-01-28
Loading full text...

Full text loading...

References

  1. Lehmann KB. Atlas und Grundriss der Bakteriologie und Lehrbuch der speziellen bakteriologischen Diagnostik, v.1, 1896: Lehmann; 1896
  2. Skerman V, Mcgowan v, Sneath P. Approved lists of bacterial names. Int J Syst Evol Microbiol 1980; 30:225–420 [View Article]
    [Google Scholar]
  3. Nouioui I, Carro L, Garcia-Lopez M, Meier-Kolthoff JP, Woyke T. Genome-based taxonomic classification of the phylum actinobacteria. Front Microbiol 2018; 9:2007 [View Article] [PubMed]
    [Google Scholar]
  4. Gupta RS, Lo B, Son J. Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Front Microbiol 2018; 9:67 [View Article] [PubMed]
    [Google Scholar]
  5. Ramaprasad EVV, Rizvi A, Banerjee S, Sasikala C, Ramana CV. Mycobacterium oryzae sp. nov., a scotochromogenic, rapidly growing species is able to infect human macrophage cell line. Int J Syst Evol Microbiol 2016; 66:4530–4536 [View Article] [PubMed]
    [Google Scholar]
  6. Hennessee CT, Seo JS, Alvarez AM, Li QX. Polycyclic aromatic hydrocarbon-degrading species isolated from Hawaiian soils: Mycobacterium crocinum sp. nov., Mycobacterium pallens sp. nov., Mycobacterium rutilum sp. nov., Mycobacterium rufum sp. nov. and Mycobacterium aromaticivorans sp. nov. Int J Syst Evol Microbiol 2009; 59:378–387 [View Article] [PubMed]
    [Google Scholar]
  7. Zhang Y, Zhang J, Fang C, Pang H, Fan J. Mycobacterium litorale sp. nov., a rapidly growing mycobacterium from soil. Int J Syst Evol Microbiol 2012; 62:1204–1207 [View Article] [PubMed]
    [Google Scholar]
  8. Derz K, Klinner U, Schuphan I, Stackebrandt E, Kroppenstedt RM. Mycobacterium pyrenivorans sp. nov., a novel polycyclic-aromatic-hydrocarbon-degrading species. Int J Syst Evol Microbiol 2004; 54:2313–2317 [View Article] [PubMed]
    [Google Scholar]
  9. Zhang DF, Chen X, Zhang XM, Zhi XY, Yao JC. Mycobacterium sediminis sp. nov. and Mycobacterium arabiense sp. nov., two rapidly growing members of the genus Mycobacterium. Int J Syst Evol Microbiol 2013; 63:4081–4086 [View Article] [PubMed]
    [Google Scholar]
  10. Konjek J, Souded S, Guerardel Y, Trivelli X, Bernut A. Mycobacterium lutetiense sp. nov., Mycobacterium montmartrense sp. nov. and Mycobacterium arcueilense sp. nov., members of a novel group of non-pigmented rapidly growing mycobacteria recovered from a water distribution system. Int J Syst Evol Microbiol 2016; 66:3694–3702 [View Article] [PubMed]
    [Google Scholar]
  11. Trujillo ME, Velazquez E, Kroppenstedt RM, Schumann P, Rivas R. Mycobacterium psychrotolerans sp. nov., isolated from pond water near a uranium mine. Int J Syst Evol Microbiol 2004; 54:1459–1463 [View Article] [PubMed]
    [Google Scholar]
  12. Tran PM, Dahl JL. Mycobacterium sarraceniae sp. nov. and Mycobacterium helvum sp. nov., isolated from the pitcher plant Sarracenia purpurea. Int J Syst Evol Microbiol 2016; 66:4480–4485 [View Article] [PubMed]
    [Google Scholar]
  13. Tortoli E, Piersimoni C, Kroppenstedt RM, Montoya-Burgos JI, Reischl U. Mycobacterium doricum sp. nov. Int J Syst Evol Microbiol 2001; 51:2007–2012 [View Article] [PubMed]
    [Google Scholar]
  14. Shahraki AH, Cavusoglu C, Borroni E, Heidarieh P, Koksalan OK. Mycobacterium celeriflavum sp. nov., a rapidly growing scotochromogenic bacterium isolated from clinical specimens. Int J Syst Evol Microbiol 2015; 65:510–515 [View Article] [PubMed]
    [Google Scholar]
  15. Kim BJ, Kim JM, Kim BR, Lee SY, Kim G. Mycobacterium anyangense sp. nov., a rapidly growing species isolated from blood of Korean native cattle, Hanwoo (Bos taurus coreanae). Int J Syst Evol Microbiol 2015; 65:2277–2285 [View Article] [PubMed]
    [Google Scholar]
  16. Gcebe N, Rutten V, Pittius NGv, Naicker B, Michel A. Mycobacterium malmesburyense sp. nov., a non-tuberculous species of the genus Mycobacterium revealed by multiple gene sequence characterization. Int J Syst Evol Microbiol 2017; 67:832–838 [View Article] [PubMed]
    [Google Scholar]
  17. Li J, Lei W, Yang J, Lu S, Jin D. Aeromicrobium chenweiae sp. nov. and Aeromicrobium yanjiei sp. nov., isolated from Tibetan antelope (Pantholops hodgsonii) and plateau pika (Ochotona curzoniae), respectively. Int J Syst Evol Microbiol 2020; 70:4683–4690 [View Article] [PubMed]
    [Google Scholar]
  18. Zhu W, Li J, Wang X, Yang J, Lu S. Actinomyces wuliandei sp. nov., Corynebacterium liangguodongii sp. nov., Corynebacterium yudongzhengii sp. nov. and Oceanobacillus zhaokaii sp. nov., isolated from faeces of Tibetan antelope in the Qinghai-Tibet plateau of China. Int J Syst Evol Microbiol 2020; 70:3763–3774 [View Article] [PubMed]
    [Google Scholar]
  19. Tian Z, Lu S, Jin D, Yang J, Pu J. Cellulomonas shaoxiangyii sp. nov., isolated from faeces of Tibetan antelope (Pantholops hodgsonii) on the Qinghai–Tibet Plateau. Int J Syst Evol Microbiol 2020; 70:2204–2210 [View Article] [PubMed]
    [Google Scholar]
  20. Wang X, Yang J, Lu S, Lai X-H, Jin D. Nocardioides houyundeii sp. nov., isolated from Tibetan antelope faeces. Int J Syst Evol Microbiol 2018; 68:3874–3880 [View Article] [PubMed]
    [Google Scholar]
  21. Li J, Yang J, Lu S, Jin D, Lai X-H. Mycetocola zhujimingii sp. nov., isolated from faeces of Tibetan antelopes (Pantholops hodgsonii). Int J Syst Evol Microbiol 2019; 69:1117–1122 [View Article] [PubMed]
    [Google Scholar]
  22. Hwang YJ, Son JS, Ghim SY. Paenibacillus elymi sp. nov., isolated from the rhizosphere of Elymus tsukushiensis, a plant native to the Dokdo Islands, Republic of Korea. Int J Syst Evol Microbiol 2018; 68:2615–2621 [View Article] [PubMed]
    [Google Scholar]
  23. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article] [PubMed]
    [Google Scholar]
  24. Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics 2002; Chapter 2:Unit 2.3 [View Article] [PubMed]
    [Google Scholar]
  25. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  26. Berlin K, Koren S, Chin CS, Drake JP, Landolin JM. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 2015; 33:623–630 [View Article] [PubMed]
    [Google Scholar]
  27. Richter M, Rossello-Mora R, Oliver Glockner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  28. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article] [PubMed]
    [Google Scholar]
  29. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 2012; 61:1061–1067 [View Article] [PubMed]
    [Google Scholar]
  30. Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 2019; 47:D687–D692 [View Article] [PubMed]
    [Google Scholar]
  31. Fedrizzi T, Meehan CJ, Grottola A, Giacobazzi E, Fregni Serpini G. Genomic characterization of nontuberculous mycobacteria. Sci Rep 2017; 7:45258 [View Article] [PubMed]
    [Google Scholar]
  32. Zhao D, Yang XM, Chen QY, Zhang XS, Guo CJ. A modified acid-fast staining method for rapid detection of Mycobacterium tuberculosis. J Microbiol Methods 2012; 91:128–132 [View Article] [PubMed]
    [Google Scholar]
  33. Reischl U, Melzl H, Kroppenstedt RM, Miethke T, Naumann L. Mycobacterium monacense sp. nov. Int J Syst Evol Microbiol 2006; 56:2575–2578 [View Article] [PubMed]
    [Google Scholar]
  34. Vuorio R, Andersson MA, Rainey FA, Kroppenstedt RM, Kampfer P. A new rapidly growing mycobacterial species, Mycobacterium murale sp. nov., isolated from the indoor walls of a children’s day care centre. Int J Syst Bacteriol 1999; 49:25–35 [View Article] [PubMed]
    [Google Scholar]
  35. Nouioui I, Carro L, Sangal V, Jando M, Igual JM. Formal description of Mycobacterium neglectum sp. nov. and Mycobacterium palauense sp. nov., rapidly growing actinobacteria. Antonie van Leeuwenhoek 2018; 111:1209–1223 [View Article] [PubMed]
    [Google Scholar]
  36. Athalye M, Noble WC, Minnikin DE. Analysis of cellular fatty acids by gas chromatography as a tool in the identification of medically important coryneform bacteria. J Appl Bacteriol 1985; 58:507–512 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005019
Loading
/content/journal/ijsem/10.1099/ijsem.0.005019
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error