1887

Abstract

The evolutionary relationships among species of the family were examined based on 255 available genomes representing >85 % of the species from this family. In a phylogenetic tree based on concatenated sequences of 118 core proteins, most species of the genus grouped within one large cluster which also included members of the genera and . Within this large cluster 18–30 clades/subclades of species of the genus consisting of between 1 and 36 species, were observed. However, a number of species of the genus branched outside of this main cluster and were interspersed among other genera of the family . This included a strongly supported clade (Pertucinogena clade) consisting of 19 mainly halotolerant species. The distinctness of this clade from all other members of the family is strongly supported by 24 conserved signature indels (CSIs) in diverse proteins that are exclusively found in all members of this clade. Nine uncharacterized members of the genus also shared these CSIs and they branched within the Pertucinogena clade, indicating their affiliation to this clade. On the basis of the strong evidence supporting the distinctness of the Pertucinogena clade, we are proposing transfer of species from this clade into a novel genus gen. nov. also branches outside of the main cluster and groups reliably with and . Six identified CSIs are uniquely shared by these three species and we are proposing their integration into the emended genus , which has priority over the name . We are also proposing transfer of the deep-branching , for which 22 exclusive CSIs have been identified, into the genus gen. nov. Lastly, we present strong evidence that the species and are misclassified into the genus and that they are specifically related to the genera and , respectively. In addition, we are also reclassifying ‘ as sp. nov. (Type strain: G-6302=ATCC 31363=BCRC 13035).

Funding
This study was supported by the:
  • Alliance Grant, NSERC
    • Principle Award Recipient: BashudevRudra
  • Ontario Ministry of Research, Innovation and Science
    • Principle Award Recipient: RadheyS. Gupta
  • Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada (Award RGPIN-2019-06397)
    • Principle Award Recipient: BashudevRudra
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005011
2021-09-21
2024-03-28
Loading full text...

Full text loading...

References

  1. Migula W. Uber Ein Neues system der Bakterien. Arb Bakt Inst Kar1sruhe; 18941
  2. Palleroni NJ. Pseudomonas John Wiley and Sons in Association with Bergey’s Manual Trust; 2015 pp 1–105
    [Google Scholar]
  3. Peix A, Ramírez-Bahena M-H, Velázquez E. Historical evolution and current status of the taxonomy of genus Pseudomonas. Infect Genet Evol 2009; 9:1132–1147 [View Article] [PubMed]
    [Google Scholar]
  4. Parte AC. LPSN - the list of prokaryotic names with standing in nomenclature. Int J Syst Evol Microbiol 2018; 68:1825–1829
    [Google Scholar]
  5. Garrity GM. NAMESFORLIFE browser tool takes expertise out the database and puts it right in the browser. Microbiology Today 2010; 2:9
    [Google Scholar]
  6. Palleroni NJ. Genus I. Pseudomonas Migula 1894. Brenner D, Krieg N, Staley J, Garrity G. eds In Bergey's Manual of Systematic Bacteriology (The Proteobacteria), part B (The Gammaproteobacteria), 2nd. edn New York: Springer; 2005 pp 323–379
    [Google Scholar]
  7. Peix A, Ramírez-Bahena M-H, Velázquez E. The current status on the taxonomy of Pseudomonas revisited: An update. Infect Genet Evol 2018; 57:106–116 [View Article] [PubMed]
    [Google Scholar]
  8. Rossi E, La Rosa R, Bartell JA, Marvig RL, Haagensen JAJ et al. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat Rev Microbiol 2021; 19:331–342 [View Article] [PubMed]
    [Google Scholar]
  9. Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA et al. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res 2016; 44:D653–D646
    [Google Scholar]
  10. Lund-Palau H, Turnbull AR, Bush A, Bardin E, Cameron L et al. Pseudomonas aeruginosa infection in cystic fibrosis: pathophysiological mechanisms and therapeutic approaches. Expert Rev Respir Med 2016; 10:685–697 [View Article] [PubMed]
    [Google Scholar]
  11. Xin X-F, Kvitko B, He SY. Pseudomonas syringae: what it takes to be a pathogen. Nat Rev Microbiol 2018; 16:316–328 [View Article] [PubMed]
    [Google Scholar]
  12. Mulet M, David Z, Nogales B, Bosch R, Lalucat J et al. Pseudomonas diversity in crude-oil-contaminated intertidal sand samples obtained after the Prestige oil spill. Appl Environ Microbiol 2011; 77:1076–1085 [View Article] [PubMed]
    [Google Scholar]
  13. Sayers EW, Agarwala R, Bolton EE, Brister JR, Canese K et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2019; 47:D23–D28 [View Article]
    [Google Scholar]
  14. García-Valdés E, Lalucat J. Pseudomonas: Molecular phylogeny and current taxonomy. In Pseudomonas: Molecular and Applied Biology pp 1–23
    [Google Scholar]
  15. Lalucat J, Mulet M, Gomila M, García-Valdés E. Genomics in bacterial taxonomy: Impact on the genus Pseudomonas. Genes (Basel) 2020; 11:139 [View Article]
    [Google Scholar]
  16. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 2000; 50 Pt 4:1563–1589 [View Article] [PubMed]
    [Google Scholar]
  17. Palleroni NJ. The Pseudomonas story. Environ Microbiol 2010; 12:1377–1383 [View Article] [PubMed]
    [Google Scholar]
  18. Sneath PH, Stevens M, Sackin MJ. Numerical taxonomy of Pseudomonas based on published records of substrate utilization. Antonie van Leeuwenhoek 1981; 47:423–448 [View Article] [PubMed]
    [Google Scholar]
  19. Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E. Phylogenomics and systematics in Pseudomonas. Front Microbiol 2015; 6:214 [View Article] [PubMed]
    [Google Scholar]
  20. Mulet M, Lalucat J, García-Valdés E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 2010; 12:1513–1530 [View Article] [PubMed]
    [Google Scholar]
  21. Garrido-Sanz D, Meier-Kolthoff JP, Göker M, Martín M, Rivilla R et al. Correction: Genomic and genetic diversity within the Pseudomonas fluorescens complex. PLoS One 2016; 11:e0153733 [View Article] [PubMed]
    [Google Scholar]
  22. Bueno-Gonzalez V, Brady C, Denman S, Allainguillaume J, Arnold D. Pseudomonas kirkiae sp. nov., a novel species isolated from oak in the United Kingdom, and phylogenetic considerations of the genera Pseudomonas, Azotobacter and Azomonas. Int J Syst Evol Microbiol 2020; 70:2426–2434 [View Article] [PubMed]
    [Google Scholar]
  23. Hesse C, Schulz F, Bull CT, Shaffer BT, Yan Q et al. Genome-based evolutionary history of Pseudomonas spp. Environ Microbiol 2018; 20:2142–2159 [View Article] [PubMed]
    [Google Scholar]
  24. Özen AI, Ussery DW. Defining the Pseudomonas genus: where do we draw the line with Azotobacter?. Microb Ecol 2012; 63:239–248 [View Article] [PubMed]
    [Google Scholar]
  25. Young JM, Park DC. Probable synonymy of the nitrogen-fixing genus Azotobacter and the genus Pseudomonas. Int J Syst Evol Microbiol 2007; 57:2894–2901 [View Article] [PubMed]
    [Google Scholar]
  26. Rediers H, Vanderleyden J, De Mot R. Azotobacter vinelandii: a Pseudomonas in disguise?. Microbiology (Reading) 2004; 150:1117–1119 [View Article] [PubMed]
    [Google Scholar]
  27. Drobish AM, Emery BD, Whitney AM, Lauer AC, Metcalfe MG et al. Oblitimonas alkaliphila gen. nov., sp. nov., in the family Pseudomonadaceae, recovered from a historical collection of previously unidentified clinical strains. Int J Syst Evol Microbiol 2016; 66:3063–3070 [View Article] [PubMed]
    [Google Scholar]
  28. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 39:996–1004
    [Google Scholar]
  29. Hu FP, Young JM, Stead DE, Goto M. Transfer of Pseudomonas cissicola (Takimoto 1939) Burkholder 1948 to the genus Xanthomonas. Int J Syst Evol Microbiol 1997; 47:228–230
    [Google Scholar]
  30. Cutino-Jimenez AM, Menck CFM, Cambas YT, Diaz-Perez JC. Protein signatures to identify the different genera within the Xanthomonadaceae family. Braz J Microbiol 2020; 51:1515–1526 [View Article] [PubMed]
    [Google Scholar]
  31. Horsman ME, Marous DR, Li R, Oliver RA, Byun B et al. Whole-genome shotgun sequencing of two beta-proteobacterial species in search of the bulgecin biosynthetic cluster. ACS Chem Biol 2017; 12:2552–2557 [View Article] [PubMed]
    [Google Scholar]
  32. Wang Z, Wu M. A phylum-level bacterial phylogenetic marker database. Mol Biol Evol 2013; 30:1258–1262 [View Article] [PubMed]
    [Google Scholar]
  33. Gupta RS, Patel S, Saini N, Chen S. Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. Int J Syst Evol Microbiol 2020; 70:5753–5798 [View Article] [PubMed]
    [Google Scholar]
  34. Adeolu M, Alnajar S, Naushad S, Gupta S. Genome-based phylogeny and taxonomy of the “Enterobacteriales”: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 2016; 66:5575–5599 [View Article] [PubMed]
    [Google Scholar]
  35. Eddy SR. Accelerated Profile HMM Searches. PLoS Comput Biol 2011; 7:e1002195 [View Article] [PubMed]
    [Google Scholar]
  36. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011; 7:539 [View Article] [PubMed]
    [Google Scholar]
  37. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article] [PubMed]
    [Google Scholar]
  38. Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 2001; 18:691–699 [View Article] [PubMed]
    [Google Scholar]
  39. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article] [PubMed]
    [Google Scholar]
  40. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article] [PubMed]
    [Google Scholar]
  41. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  42. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  43. Naushad HS, Gupta RS. Phylogenomics and molecular signatures for species from the plant pathogen-containing order Xanthomonadales. PLoS One 2013; 8:e55216 [View Article] [PubMed]
    [Google Scholar]
  44. Patel S, Gupta RS. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: Proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int J Syst Evol Microbiol 2020; 70:406–438 [View Article] [PubMed]
    [Google Scholar]
  45. Gupta RS. Identification of conserved indels that are useful for classification and evolutionary studies. Methods in Microbiology 2014; 41:153–182
    [Google Scholar]
  46. Alnajar S, Gupta RS. Phylogenomics and comparative genomic studies delineate six main clades within the family Enterobacteriaceae and support the reclassification of several polyphyletic members of the family. Infect Genet Evol 2017; 54:108–127 [View Article] [PubMed]
    [Google Scholar]
  47. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ. Multiple sequence alignment with Clustal X. Trends Biochem Sci 1998; 23:403–405 [View Article] [PubMed]
    [Google Scholar]
  48. Gupta RS. Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin’s views on classification. FEMS Microbiol Rev 2016; 40:520–553 [View Article] [PubMed]
    [Google Scholar]
  49. Parker CT, Lyons CM, Roston GR, Garrity GM. Systems and Methods for Automatically Identifying and Linking Names in Digital Resources (Continuation). patent U.S. Patent Grant No. 10 204 168; 2019
  50. Felsenstein J. Inferring Phylogenies Sunderland, Mass: Sinauer Associates, Inc; 2004
    [Google Scholar]
  51. Gupta RS. Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 1998; 62:1435–1491 [View Article] [PubMed]
    [Google Scholar]
  52. Baldauf SL. Phylogeny for the faint of heart: a tutorial. Trends Genet 2003; 19:345–351 [View Article] [PubMed]
    [Google Scholar]
  53. Sawana A, Adeolu M, Gupta RS. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 2014; 5:429 [View Article] [PubMed]
    [Google Scholar]
  54. Rokas A, Holland PW. Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 2000; 15:454–459 [View Article] [PubMed]
    [Google Scholar]
  55. Aldridge P, Karlinsey J, Hughes KT. The type III secretion chaperone FlgN regulates flagellar assembly via a negative feedback loop containing its chaperone substrates FlgK and FlgL. Mol Microbiol 2003; 49:1333–1345 [View Article] [PubMed]
    [Google Scholar]
  56. Tan WB, Jiang Z, Chen C, Yuan Y, Gao LF et al. Thiopseudomonas denitrificans gen. nov., sp. nov., isolated from anaerobic activated sludge. Int J Syst Evol Microbiol 2015; 65:225–229 [View Article] [PubMed]
    [Google Scholar]
  57. Hameed A, Shahina M, Lin S-Y, Liu Y-C, Young C-C. Pseudomonas hussainii sp. nov., isolated from droppings of a seashore bird, and emended descriptions of Pseudomonas pohangensis, Pseudomonas benzenivorans and Pseudomonas segetis. Int J Syst Evol Microbiol 2014; 64:2330–2337 [View Article] [PubMed]
    [Google Scholar]
  58. Naushad S, Adeolu M, Wong S, Sohail M, Schellhorn HE et al. A phylogenomic and molecular marker based taxonomic framework for the order Xanthomonadales: proposal to transfer the families Algiphilaceae and Solimonadaceae to the order Nevskiales ord. nov. and to create a new family within the order Xanthomonadales, the family Rhodanobacteraceae fam. nov., containing the genus Rhodanobacter and its closest relatives. Antonie van Leeuwenhoek 2015; 107:467–485 [View Article] [PubMed]
    [Google Scholar]
  59. Desnoues N, Lin M, Guo X, Ma L, Lopez R et al. Nitrogen fixation genetics and regulation in a Pseudomonas stutzeri strain associated with rice. Microbiology (Reading) 2003; 149:2251–2262 [View Article] [PubMed]
    [Google Scholar]
  60. Silby MW, Winstanley C, Godfrey SA, Levy SB, Jackson RW. Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 2011; 35:652–680 [View Article] [PubMed]
    [Google Scholar]
  61. Amoozegar MA, Shahinpei A, Sepahy AA, Makhdoumi-Kakhki A, Seyedmahdi SS et al. Pseudomonas salegens sp. nov., a halophilic member of the genus Pseudomonas isolated from a wetland. Int J Syst Evol Microbiol 2014; 64:3565–3570 [View Article] [PubMed]
    [Google Scholar]
  62. Romanenko LA, Uchino M, Falsen E, Frolova GM, Zhukova NV et al. Pseudomonas pachastrellae sp. nov., isolated from a marine sponge. Int J Syst Evol Microbiol 2005; 55:919–924 [View Article] [PubMed]
    [Google Scholar]
  63. Pascual J, Lucena T, Ruvira MA, Giordano A, Gambacorta A et al. Pseudomonas litoralis sp. nov., isolated from Mediterranean seawater. Int J Syst Evol Microbiol 2012; 62:438–444 [View Article] [PubMed]
    [Google Scholar]
  64. Zhong ZP, Liu Y, Hou TT, Liu HC, Zhou YG et al. Pseudomonas salina sp. nov., isolated from a salt lake. Int J Syst Evol Microbiol 2015; 65:2846–2851 [View Article] [PubMed]
    [Google Scholar]
  65. Hwang CY, Zhang GI, Kang SH, Kim HJ, Cho BC. Pseudomonas pelagia sp. nov., isolated from a culture of the Antarctic green alga Pyramimonas gelidicola. Int J Syst Evol Microbiol 2009; 59:3019–3024 [View Article] [PubMed]
    [Google Scholar]
  66. Wang MQ, Sun L. Pseudomonas oceani sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2016; 66:4250–4255 [View Article] [PubMed]
    [Google Scholar]
  67. Dobritsa AP, Samadpour M. Reclassification of Burkholderia insecticola as Caballeronia insecticola comb. nov. and reliability of conserved signature indels as molecular synapomorphies. Int J Syst Evol Microbiol 2019; 69:2057–2063 [View Article] [PubMed]
    [Google Scholar]
  68. Xiao Y-P, Hui W, Wang Q, Roh SW, Shi X-Q et al. Pseudomonas caeni sp. nov., a denitrifying bacterium isolated from the sludge of an anaerobic ammonium-oxidizing bioreactor. Int J Syst Evol Microbiol 2009; 59:2594–2598 [View Article] [PubMed]
    [Google Scholar]
  69. Parker CT, Tindall BJ, Garrity GM. International Code of Nomenclature of prokaryotes. Int J Syst Evol Microbiol 2019; 69:S1-S111
    [Google Scholar]
  70. Skerman VBD, McGowan V, Sneath PHA. Approved lists of bacterial names. Int J Syst Bacteriol 1980; 30:225–420
    [Google Scholar]
  71. Wang JW, Cai M, Nie Y, Hu B, Yang Y et al. Pseudomonas jilinensis sp. nov., isolated from oil production water of Jilin Oilfield in China. Curr Microbiol 2020; 77:688–694 [View Article] [PubMed]
    [Google Scholar]
  72. Azhar EI, Papadioti A, Bibi F, Ashshi AM, Raoult D et al. Pseudomonas saudimassiliensis sp. nov. a new bacterial species isolated from air samples in the urban environment of Makkah, Saudi Arabia. New Microbes New Infect 2017; 16:43–44 [View Article] [PubMed]
    [Google Scholar]
  73. Wong BT, Lee DJ. Pseudomonas yangmingensis sp. nov., an alkaliphilic denitrifying species isolated from a hot spring. J Biosci Bioeng 2014; 117:71–74 [View Article] [PubMed]
    [Google Scholar]
  74. Wei Y, Mao H, Xu Y, Zou W, Fang J et al. Pseudomonas abyssi sp. nov., isolated from the abyssopelagic water of the Mariana Trench. Int J Syst Evol Microbiol 2018; 68:2462–2467 [View Article] [PubMed]
    [Google Scholar]
  75. Sun J, Wang W, Ying Y, Zhu X, Liu J et al. Pseudomonas profundi sp. nov., isolated from deep-sea water. Int J Syst Evol Microbiol 2018; 68:1776–1780 [View Article] [PubMed]
    [Google Scholar]
  76. Kawai Y, Yabuuchi E. Pseudomonas pertucinogena sp. nov., an organism previously misidentified as Bordetella pertussis. Int J Syst Bacteriol 1975; 25:317–323
    [Google Scholar]
  77. Lin SY, Hameed A, Liu YC, Hsu YH, Lai WA et al. Pseudomonas formosensis sp. nov., a gamma-proteobacteria isolated from food-waste compost in Taiwan. Int J Syst Evol Microbiol 2013; 63:3168–3174 [View Article] [PubMed]
    [Google Scholar]
  78. Zhang DC, Liu HC, Zhou YG, Schinner F, Margesin R. Pseudomonas bauzanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2011; 61:2333–2337 [View Article] [PubMed]
    [Google Scholar]
  79. Kim K-H, Roh SW, Chang H-W, Nam Y-D, Yoon J-H et al. Pseudomonas sabulinigri sp. nov., isolated from black beach sand. Int J Syst Evol Microbiol 2009; 59:38–41 [View Article] [PubMed]
    [Google Scholar]
  80. Mulet M, Sánchez D, Rodríguez AC, Nogales B, Bosch R et al. Pseudomonas gallaeciensis sp. nov., isolated from crude-oil-contaminated intertidal sand samples after the Prestige oil spill. Syst Appl Microbiol 2018; 41:340–347 [View Article] [PubMed]
    [Google Scholar]
  81. Sánchez D, Mulet M, Rodríguez AC, David Z, Lalucat J et al. Pseudomonas aestusnigri sp. nov., isolated from crude oil-contaminated intertidal sand samples after the Prestige oil spill. Syst Appl Microbiol 2014; 37:89–94 [View Article] [PubMed]
    [Google Scholar]
  82. Liu M, Luo X, Zhang L, Dai J, Wang Y et al. Pseudomonas xinjiangensis sp. nov., a moderately thermotolerant bacterium isolated from desert sand. Int J Syst Evol Microbiol 2009; 59:1286–1289 [View Article] [PubMed]
    [Google Scholar]
  83. Lai Q, Shao Z. Pseudomonas xiamenensis sp. nov., a denitrifying bacterium isolated from activated sludge. Int J Syst Evol Microbiol 2008; 58:1911–1915 [View Article] [PubMed]
    [Google Scholar]
  84. Burkholder WH. Bacteria as plant pathogens. Annu Rev Microbiol 1948; 2 (1 vol.):389–412 [View Article] [PubMed]
    [Google Scholar]
  85. Chester FD. A Manual of Determinative Bacteriology New York: The MacMillan Co; 1901
    [Google Scholar]
  86. Imada I, Nishinomiya KK, Sakai AM, Asaik MT. Antibiotic G-6302. Patent US Patent 4,229,436. 1978 1978
  87. Gao ZH, Zhang QM, Lv YY, Wang YQ, Zhao BN et al. Paraburkholderia acidiphila sp. nov., Paraburkholderia acidisoli sp. nov. and Burkholderia guangdongensis sp. nov., isolated from forest soil, and reclassification of Burkholderia ultramafica as Paraburkholderia ultramafica comb. nov. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  88. Imada A, Kitano K, Kintaka K, Muroi M, Asai M. Sulfazecin and isosulfazecin, novel beta-lactam antibiotics of bacterial origin. Nature 1981; 289:590–591 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005011
Loading
/content/journal/ijsem/10.1099/ijsem.0.005011
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error