1887

Abstract

Aniline blue-decolourizing bacterial strain 502str22, isolated from sediment collected in the East Pacific, was subjected to characterization by a polyphasic taxonomic approach. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain 502str22 belongs to the genus , with closely related type strains ‘’ F72 (97.6%), SM117 (97.1%) and Jyi-02 (97.0%). Digital DNA–DNA hybridization and average nucleotide identity values between strain 502str22 and closely related type strains were 20.3–24.8% and 74.1–81.9%, respectively. The major cellular fatty acid (>10%) was C 7. The polar lipid profile consisted of a mixture of phosphatidylcholine, one sphingoglycolipid, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylmonomethylethanolamine. The DNA G+C content of strain 502str22 was 65.5 mol%. The polyphasic taxonomic results indicated that strain 502str22 represents a novel species of the genus , for which the name sp. nov is proposed. The type strain is 502str22 (=KCTC 82134= MCCC 1K04799 ).

Funding
This study was supported by the:
  • first-class discipline of biological engineering of zhejiang province (Award CX2020003)
    • Principle Award Recipient: XiunuanChen
  • national program on global change and air-sea interaction (Award GASI04-HYDZ-02)
    • Principle Award Recipient: NotApplicable
  • ningbo public welfare technology research program (Award 202002N3115)
    • Principle Award Recipient: JigangChen
  • top disciplines of higher education of ningbo (Award Enviromental Science and Engineering)
    • Principle Award Recipient: JigangChen
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005001
2021-09-15
2022-09-30
Loading full text...

Full text loading...

References

  1. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM et al. Analysis of 1000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 2020; 11:468 [View Article] [PubMed]
    [Google Scholar]
  2. Oren A, Garrity G. Notification of changes in taxonomic opinion previously published outside the IJSEM. Int J Syst Evol Microbiol 2020; 70:4061–4090 [View Article] [PubMed]
    [Google Scholar]
  3. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51:1405–1417 [View Article] [PubMed]
    [Google Scholar]
  4. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990; 34:99–119 [View Article] [PubMed]
    [Google Scholar]
  5. Maruyama T, Park HD, Ozawa K, Tanaka Y, Sumino T et al. Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int J Syst Evol Microbiol 2006; 56:85–89 [View Article] [PubMed]
    [Google Scholar]
  6. Sheu SY, Cai CY, Kwon SW, Chen WM. Novosphingobium umbonatum sp. nov., isolated from a freshwater mesocosm. Int J Syst Evol Microbiol 2020; 70:1122–1132 [View Article] [PubMed]
    [Google Scholar]
  7. Zhang DC, Liu YX, Huang HJ. Novosphingobium profundi sp. nov. isolated from a deep-sea seamount. Antonie van Leeuwenhoek 2017; 110:19–25 [View Article] [PubMed]
    [Google Scholar]
  8. Gupta SK, Lal D, Lal R. Novosphingobium panipatense sp. nov. and Novosphingobium mathurense sp. nov., from oil-contaminated soil. Int J Syst Evol Microbiol 2009; 59:156–161 [View Article] [PubMed]
    [Google Scholar]
  9. Sheu SY, Huang CW, Chen JC, Chen ZH, Chen WM. Novosphingobium arvoryzae sp. nov., isolated from a flooded rice field. Int J Syst Evol Microbiol 2018; 68:2151–2157 [View Article] [PubMed]
    [Google Scholar]
  10. Chen Y, Zhu S, Lin D, Wang X, Yang J et al. Devosia naphthalenivorans sp. nov., isolated from East Pacific Ocean sediment. Int J Syst Evol Microbiol 2019; 69:1974–1979 [View Article] [PubMed]
    [Google Scholar]
  11. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  12. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  13. Kumar S, Stecher G, Tamura K. mega7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  16. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  17. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  18. Nordberg H, Cantor M, Dusheyko S, Hua S, Poliakov A et al. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res 2014; 42:D26–31 [View Article] [PubMed]
    [Google Scholar]
  19. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  20. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  21. Colston SM, Fullmer MS, Beka L, Lamy B, Gogarten JP et al. Bioinformatic genome comparisons for taxonomic and phylogenetic assignments using Aeromonas as a test case. mBio 2014; 5:e02136 [View Article] [PubMed]
    [Google Scholar]
  22. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  23. Grant JR, Stothard P. The cgview server: A comparative genomics tool for circular genomes. Nucleic Acids Res 2008; 36:W181–W184 [View Article]
    [Google Scholar]
  24. Xu L, Dong Z, Fang L, Luo Y, Wei Z et al. Orthovenn2: A web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 2019; 47:W52
    [Google Scholar]
  25. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  26. de Gonzalo G, Colpa DI, Habib MH, Fraaije MW. Bacterial enzymes involved in lignin degradation. J Biotechnol 2016; 236:110–119 [View Article] [PubMed]
    [Google Scholar]
  27. Tindall BJ, Sikorski J, Smibert RM, Krieg NR et al. Phenotypic characterization and the principles of comparative systematics. Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T. eds In Methods for General and Molecular Microbiology, 3rd. edn Washington, DC: American Society for Microbiology; 2007 pp 330–393
    [Google Scholar]
  28. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  29. da Costa MS, Albuquerque L, Nobre MF, Wait R. The identification of polar lipids in prokaryotes. Methods Microbiol 2011; 38:165–181
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005001
Loading
/content/journal/ijsem/10.1099/ijsem.0.005001
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error