1887

Abstract

A Gram-stain-negative, aerobic, motile by gliding, rod-shaped and pink-coloured bacterium, designated strain SW-16, was isolated from the sediment of small stream in the Republic of Korea. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SW-16 formed a lineage within the genus of the family . Phylogenetic analysis also showed that strain SW-16 was most closely related to 15-51 (98.0% 16S rRNA gene sequence similarity), R135 (97.5%), 15-52 (97.4%), DS-27 (97.0%) and THG-T17 (97.0%). Growth was observed at 10–37 °C (optimum at 30 °C), pH 6–8 (optimum at pH 7) and with 0–2.0 % NaCl (optimum at 0%). The major fatty acids of the bacterial strain were iso-C, iso-C 3-OH and summed feature 3 (iso-C 2-OH and/or C 7). The predominant respiratory quinone was menaquinone-7 and the major polar lipids were phosphatidylethanolamine, two unidentified amino lipids, one unidentified phospholipid and three unidentified lipids. The genome size of strain SW-16 was 5.8 Mbp and the G+C content was 38.5 mol%. Based on the results of phenotypic, genomic and phylogenetic analyses, strain SW-16 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SW-16 (=KEMB 1602–396=KCTC 82079=JCM 34181).

Funding
This study was supported by the:
  • Kyonggi University
    • Principle Award Recipient: HongSik Im
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004989
2021-09-30
2024-03-28
Loading full text...

Full text loading...

References

  1. Steyn P, Segers P, Vancanneyt M, Sandra P, Kersters K et al. Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Evol Microbiol 1998; 48:165–177
    [Google Scholar]
  2. Vanparys B, Heylen K, Lebbe L, De Vos P. Pedobacter caeni sp. nov., a novel species isolated from a nitrifying inoculum. Int J Syst Evol Microbiol 2005; 55:1315–1318 [View Article] [PubMed]
    [Google Scholar]
  3. Hwang CY, Choi DH, Cho BC. Pedobacter roseus sp. nov., isolated from a hypertrophic pond, and emended description of the genus Pedobacter. Int J Syst Evol Microbiol 2006; 56:1831–1836 [View Article] [PubMed]
    [Google Scholar]
  4. Gallego V, García MT, Ventosa A. Pedobacter aquatilis sp. nov., isolated from drinking water, and emended description of the genus Pedobacter. Int J Syst Evol Microbiol 2006; 56:1853–1858 [View Article] [PubMed]
    [Google Scholar]
  5. Zhou Z, Jiang F, Wang S, Peng F, Dai J et al. Pedobacter arcticus sp. nov., a facultative psychrophile isolated from Arctic soil, and emended descriptions of the genus Pedobacter, Pedobacter heparinus, Pedobacter daechungensis, Pedobacter terricola, Pedobacter glucosidilyticus and Pedobacter lentus. Int J Syst Evol Microbiol 2012; 62:1963–1969 [View Article] [PubMed]
    [Google Scholar]
  6. Farfán M, Montes MJ, Marqués AM. Reclassification of Sphingobacterium antarcticum Shivaji et al. 1992 as Pedobacter antarcticus comb. nov. and Pedobacter piscium (Takeuchi and Yokota 1993) Steyn et al. 1998 as a later heterotypic synonym of Pedobacter antarcticus. Int J Syst Evol Microbiol 2014; 64:863–868 [View Article] [PubMed]
    [Google Scholar]
  7. Kook M, Park Y, Yi T-H. Pedobacter jejuensis sp. nov., isolated from soil of a pine grove, and emended description of the genus Pedobacter. Int J Syst Evol Microbiol 2014; 64:1789–1794 [View Article] [PubMed]
    [Google Scholar]
  8. Du J, Singh H, Ngo HTT, Won K-H, Kim K-Y et al. Pedobacter daejeonensis sp. nov. and Pedobacter trunci sp. nov., isolated from an ancient tree trunk, and emended description of the genus Pedobacter. Int J Syst Evol Microbiol 2015; 65:1241–1246 [View Article] [PubMed]
    [Google Scholar]
  9. Wei Y, Wang B, Zhang L, Zhang J, Chen S. Pedobacter yulinensis sp. nov., isolated from sandy soil, and emended description of the genus Pedobacter. Int J Syst Evol Microbiol 2018; 68:2523–2529 [View Article] [PubMed]
    [Google Scholar]
  10. Kwon S-W, Son J-A, Kim S-J, Kim Y-S, Park I-C et al. Pedobacter rhizosphaerae sp. nov. and Pedobacter soli sp. nov., isolated from rhizosphere soil of Chinese cabbage (Brassica campestris. Int J Syst Evol Microbiol 2011; 61:2874–2879 [View Article] [PubMed]
    [Google Scholar]
  11. Margesin R, Shivaji S. Pedobacter. Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Inc; 2015 pp 1–17
    [Google Scholar]
  12. Zhou L-Y, Chen X-Y, Du Z-J, Mu D-S. Pedobacter chinensis sp. nov., a cellulose-decomposing bacterium from Arctic tundra soil. Int J Syst Evol Microbiol 2019; 69:1926–1933 [View Article] [PubMed]
    [Google Scholar]
  13. He R-H, Liu Z-W, Yu Y, Li H-R, Du Z-J. Pedobacter changchengzhani sp. nov., isolated from soil of Antarctica. Antonie Van Leeuwenhoek 2019; 112:1747–1754 [View Article] [PubMed]
    [Google Scholar]
  14. Da X, Jiang F, Chang X, Ren L, Qiu X et al. Pedobacter ardleyensis sp. nov., isolated from soil in Antarctica. Int J Syst Evol Microbiol 2015; 65:3841–3846 [View Article] [PubMed]
    [Google Scholar]
  15. Svec P, Kralova S, Busse HJ, Kleinhagauer T, Pantucek R et al. Pedobacter jamesrossensis sp. nov., Pedobacter lithocola sp. nov., Pedobacter mendelii sp. nov. and Pedobacter petrophilus sp. nov., isolated from the Antarctic environment. Int J Syst Evol Microbiol 2017; 67:1499–1507 [View Article] [PubMed]
    [Google Scholar]
  16. Gao J-L, Sun P, Mao X-J, Du Y-L, Liu B-Y et al. Pedobacter zeae sp. nov., an endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 2017; 67:231–236 [View Article] [PubMed]
    [Google Scholar]
  17. Ngo HTT, Kook M, Yi T-H. Pedobacter ureilyticus sp. nov., isolated from tomato rhizosphere soil. Int J Syst Evol Microbiol 2015; 65:1008–1014 [View Article] [PubMed]
    [Google Scholar]
  18. Yang J-E, Shin J-Y, Park S-Y, T Mavlonov G, Yi E-J et al. Pedobacter kyungheensis sp. nov., with ginsenoside converting activity. J Gen Appl Microbiol 2012; 58:309–316 [View Article] [PubMed]
    [Google Scholar]
  19. Singh P, Singh H, Kim YJ, Yang DC. Pedobacter panacis sp. nov., isolated from Panax ginseng soil. Antonie van Leeuwenhoek 2017; 110:235–244 [View Article] [PubMed]
    [Google Scholar]
  20. He X-Y, Li N, Chen X-L, Zhang Y-Z, Zhang X-Y et al. Pedobacter indicus sp. nov., isolated from deep-sea sediment. Antonie van Leeuwenhoek 2020; 113:357–364 [View Article] [PubMed]
    [Google Scholar]
  21. Zhang B, Liu Z-Q, Zheng Y-G. Pedobacter quisquiliarum sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2018; 68:438–442 [View Article] [PubMed]
    [Google Scholar]
  22. Joung Y, Jang H-J, Park M, Song J, Cho J-C. Pedobacter aquicola sp. nov., isolated from freshwater. J Microbiol 2018; 56:478–484 [View Article] [PubMed]
    [Google Scholar]
  23. Singh H, Du J, Ngo HTT, Kim K-Y, Yi T-H. Pedobacter lotistagni sp. nov. isolated from lotus pond water. Antonie van Leeuwenhoek 2015; 107:951–959 [View Article] [PubMed]
    [Google Scholar]
  24. Li A-H, Liu H-C, Zhou Y-G. Pedobacter alpinus sp. nov., isolated from a plateau lake. Int J Syst Evol Microbiol 2015; 65:3782–3787 [View Article] [PubMed]
    [Google Scholar]
  25. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  26. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  28. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993; 10:1073–1095 [View Article] [PubMed]
    [Google Scholar]
  29. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  30. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article] [PubMed]
    [Google Scholar]
  31. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  32. Bernardet J, Bowman J, Dworkin M, Falkow S, Rosenberg E et al. The Prokaryotes: a Handbook on the Biology of Bacteria. Proteobacteria: Delta and Epsilon Subclasses Deeply Rooted Bacteria Berlin: Springer; 2006 pp 481–532
    [Google Scholar]
  33. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical Note # 1012001.
    [Google Scholar]
  34. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  35. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354 [View Article] [PubMed]
    [Google Scholar]
  36. Varela-Álvarez E, Andreakis N, Lago-Lestón A, Pearson GA, Serrão EA et al. Genomic DNA isolation from green and brown algae (Caulerpales and Fucales) for microsatellite library construction. J Phycol 2006; 42:741–745
    [Google Scholar]
  37. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article] [PubMed]
    [Google Scholar]
  38. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  39. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007; 23:673–679 [View Article] [PubMed]
    [Google Scholar]
  40. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. Rnammer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article] [PubMed]
    [Google Scholar]
  41. Lowe TM, Eddy SR. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955–964 [View Article] [PubMed]
    [Google Scholar]
  42. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol 2017; 34:2115–2122 [View Article] [PubMed]
    [Google Scholar]
  43. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. Eggnog 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2018; 47:D14–D309
    [Google Scholar]
  44. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  45. Stothard P, Wishart DS. Circular genome visualization and exploration using CGView. Bioinformatics 2005; 21:537–539 [View Article] [PubMed]
    [Google Scholar]
  46. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  47. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  48. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  49. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004989
Loading
/content/journal/ijsem/10.1099/ijsem.0.004989
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error