1887

Abstract

A strict aerobic bacterium, strain JW14 was isolated from soil in the Republic of Korea. Cells were Gram-stain-positive, non-endospore-forming and motile rods showing catalase-positive and oxidase-negative activities. Growth of strain JW14 was observed at 20–37 °C (optimum, 30 °C), pH 6.0–10.0 (optimum, pH 7.0) and in the presence of 0–2.0% NaCl (optimum, 0%). Strain JW14 contained menaquinone-7 as the sole isoprenoid quinone, anteiso-C, C and iso-C as the major fatty acids (>10.0%), and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unidentified aminophospholipids and an unidentified lipid as the major polar lipids. The cell-wall peptidoglycan of strain JW14 contained -diaminopimelic acid. The DNA G+C content of strain JW14 calculated from the whole genome sequence was 48.1 mol%. Strain JW14 was most closely related to DSM 15220 with 97.4% 16S rRNA gene sequence similarity. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain JW14 formed a distinct phyletic lineage from closely related type strains within the genus . Based on the results of phenotypic, chemotaxonomic and molecular analyses, strain JW14 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is JW14 (=KACC 21840=JCM 34279).

Funding
This study was supported by the:
  • Nakdonggang National Institute of Biological Resources (Award NNIBR202102105)
    • Principle Award Recipient: HyunMi Jin
  • National Institute of Biological Resources (Award NIBR202029201)
    • Principle Award Recipient: CheOk Jeon
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004981
2021-08-26
2024-06-22
Loading full text...

Full text loading...

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie van Leeuwenhoek 1994; 64:253–260 [View Article]
    [Google Scholar]
  2. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997; 47:289–298 [View Article] [PubMed]
    [Google Scholar]
  3. Huang Z, Zhao F, Li Y-H. Isolation of Paenibacillus tumbae sp. nov., from the tomb of the Emperor Yang of the Sui Dynasty, and emended description of the genus Paenibacillus. Antonie van Leeuwenhoek 2017; 110:357–364 [View Article] [PubMed]
    [Google Scholar]
  4. Berge O, Guinebretière MH, Achouak W, Normand P, Heulin T. Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol 2002; 52:607–616 [View Article] [PubMed]
    [Google Scholar]
  5. Kim J, Jung HS, Baek JH, Chun BH, Khan SA et al. Paenibacillus silvestris sp. nov., isolated from forest soil. Curr Microbiol 2021; 78:822–829 [View Article] [PubMed]
    [Google Scholar]
  6. Kong D, Zhang Q, Jiang X, Ma Q, Han X et al. Paenibacillus solisilvae sp. nov., isolated from birch forest soil. Int J Syst Evol Microbiol 2020; 70:2690–2695 [View Article] [PubMed]
    [Google Scholar]
  7. Jin HJ, Zhou YG, Liu HC, Chen SF. Paenibacillus jilunlii sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Begonia semperflorens. Int J Syst Evol Microbiol 2011; 61:1350–1355 [View Article] [PubMed]
    [Google Scholar]
  8. Tong S, Wang LW, Sun YC, Khan MS, Gao JL et al. Paenibacillus apii sp. nov., a novel nifH gene-harbouring species isolated from the rhizospheres of vegetable plants grown in different regions of northern China. Int J Syst Evol Microbiol 2020; 70:5531–5538 [View Article] [PubMed]
    [Google Scholar]
  9. Kim TS, Han JH, Joung Y, Kim SB. Paenibacillus oenotherae sp. nov. and Paenibacillus hemerocallicola sp. nov., isolated from the roots of herbaceous plants. Int J Syst Evol Microbiol 2015; 65:2717–2725 [View Article] [PubMed]
    [Google Scholar]
  10. Wang M, Jiang XW, Tang SK, Zhi XY, Yang LL. Paenibacillus paridis sp. nov., an endophytic bacterial species isolated from the root of Paris polyphylla Smith var. yunnanensis. Int J Syst Evol Microbiol 2020; 70:1940–1946 [View Article] [PubMed]
    [Google Scholar]
  11. Narsing Rao MP, Dong ZY, Kan Y, Dong L, Li S et al. Description of Paenibacillus tepidiphilus sp. nov., isolated from a tepid spring. Int J Syst Evol Microbiol 2020; 70:1977–1981 [View Article] [PubMed]
    [Google Scholar]
  12. Kim YS, Cha CJ. Paenibacillus translucens sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2018; 68:936–941 [View Article] [PubMed]
    [Google Scholar]
  13. Scheldeman P, Goossens K, Rodriguez-Diaz M, Pil A, Goris J et al. Paenibacillus lactis sp. nov., isolated from raw and heat-treated milk. Int J Syst Evol Microbiol 2004; 54:885–891 [View Article] [PubMed]
    [Google Scholar]
  14. Kim KK, Lee KC, Yu H, Ryoo S, Park Y et al. Paenibacillus sputi sp. nov., isolated from the sputum of a patient with pulmonary disease. Int J Syst Evol Microbiol 2010; 60:2371–2376 [View Article] [PubMed]
    [Google Scholar]
  15. Huang Z, Zhao F, Li YH. Isolation of Paenibacillus tumbae sp. nov., from the tomb of the emperor Yang of the Sui dynasty, and emended description of the genus Paenibacillus. Antonie van Leeuwenhoek 2017; 110:357–364 [View Article] [PubMed]
    [Google Scholar]
  16. Das SN, Wagenknecht M, Nareddy PK, Bhuvanachandra B, Niddana R et al. Amino groups of chitosan are crucial for binding to a family 32 carbohydrate binding module of a chitosanase from Paenibacillus elgii. J Biol Chem 2016; 291:18977–18990 [View Article] [PubMed]
    [Google Scholar]
  17. Dong M, Yang Y, Tang X, Shen J, Xu B et al. NaCl-, proteasetolerant and cold-active endoglucanase from Paenibacillus sp. YD236 isolated from the feces of Bos frontalis. Springerplus 2016; 5:746–757 [View Article] [PubMed]
    [Google Scholar]
  18. Seldin L. Paenibacillus, nitrogen fixation and soil fertility. Logan N, De Vos P. eds In Endospore-forming Soil Bacteria, Soil Biology Vol 27 Berlin, Heidelberg: Springer; 2011 pp 287–307
    [Google Scholar]
  19. Ripa FA, Tong S, Cao WD, Wang ET, Wang T et al. Paenibacillus rhizophilus sp. nov., a nitrogen-fixing bacterium isolated from the rhizosphere of wheat (Triticum aestivum L. Int J Syst Evol Microbiol 2019; 69:3689–3695 [View Article] [PubMed]
    [Google Scholar]
  20. Kim JM, Le NT, Chung BS, Park JH, Bae JW. Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BD-a59. Appl Environ Microbiol 2008; 74:7313–7320 [View Article] [PubMed]
    [Google Scholar]
  21. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  22. Nawrocki EP, Eddy SR. Query-dependent banding (QDB) for faster RNA similarity searches. Plos Comput Biol 2007; 3:e56 [View Article] [PubMed]
    [Google Scholar]
  23. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  24. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article] [PubMed]
    [Google Scholar]
  25. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  26. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  28. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, Kämpfer P et al. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 2002; 52:1043–1047 [View Article] [PubMed]
    [Google Scholar]
  29. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  30. Gomori G. Preparation of buffers for use in enzyme studies. Methods Enzymol 1955; 1:138–146
    [Google Scholar]
  31. Smibert RM, Krieg NR. Phenotypic characterization. Gerhardt P. eds In Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; pp 607–654
    [Google Scholar]
  32. Choi EJ, Jin HM, Kim KH, Jeon CO. Salimicrobium jeotgali sp. nov., isolated from salted, fermented seafood. Int J Syst Evol Microbiol 2014; 64:3624–3630 [View Article] [PubMed]
    [Google Scholar]
  33. Lányi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19:1–67
    [Google Scholar]
  34. Minnikin DE, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. Journal of Microbiological Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  35. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  36. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article] [PubMed]
    [Google Scholar]
  37. Minnikin D, Patel P, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004981
Loading
/content/journal/ijsem/10.1099/ijsem.0.004981
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error