Skip to content
1887

Abstract

Currently, contains two subspecies: subsp. and subsp. . In a study by Varsha and Nampoothiri, high (99.7 %) and (99.6 %) sequence similarities indicated that subsp. and probably have a close taxonomic relationship; low (92.2 %) and (97.8 %) sequence similarities and relatively low DNA–DNA hybridization value (75.8 %) indicated that subsp. and subsp. probably represent two different species. In the present study, the taxonomic relationships between subsp. , subsp. and were re-examined based on sequence analyses of 16S rRNA, , , and genes, average nucleotide identity (ANI), digital DNA–DNA hybridization (dDDH) values, average amino acid identity (AAI), fatty acid methyl ester analysis and phenotypic characterization. subsp. LMG 30663 exhibited 97.3 % ANI, 78.3 % dDDH and 96.4 % AAI values to NBRC 109475, higher than the threshold for species demarcation (95–96, 70 and 95–96 %, respectively), indicating that subsp. LMG 30663 and NBRC 109475 belong to the same species. subsp. LMG 30663 had 91.2 % ANI, 43.3 % dDDH and 92.9–93.0% AAI values with the type strain of subsp. , indicating that they represent two different species. Because has been proposed and validated before subsp. , subsp. is transferred to as subsp. comb. nov. The type strain of subsp. is BSN307 (=DSM 100577=MCC 2824=KCTC 21083=LMG 30663). The type strain of subsp. is 516 (=NBRC 109475=BCRC 80576).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award no. 31471594)
    • Principle Award Recipient: Tao GuChun
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004980
2021-08-24
2025-01-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/8/ijsem004980.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004980&mimeType=html&fmt=ahah

References

  1. Li TT, Tian WL, Gu CT. Elevation of Lactococcus lactis subsp. cremoris to the species level as Lactococcus cremoris sp. nov. and transfer of Lactococcus lactis subsp. tructae to Lactococcus cremoris as Lactococcus cremoris subsp. tructae comb. nov. Int J Syst Evol Microbiol 2019; 71:004727
    [Google Scholar]
  2. Varsha KK, Nampoothiri KM. Lactococcus garvieae subsp. bovis subsp. nov., lactic acid bacteria isolated from wild gaur (Bos gaurus) dung, and description of Lactococcus garvieae subsp. garvieae subsp. nov. Int J Syst Evol Microbiol 2016; 66:3805–3809 [View Article] [PubMed]
    [Google Scholar]
  3. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P et al. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 2005; 151:2141–2150 [View Article] [PubMed]
    [Google Scholar]
  4. Naser SM, Dawyndt P, Hoste B, Gevers D, Vandemeulebroecke K et al. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol 2007; 57:2777–2789 [View Article] [PubMed]
    [Google Scholar]
  5. De Bruyne K, Schillinger U, Caroline L, Boehringer B, Cleenwerck I et al. Leuconostoc holzapfelii sp. nov., isolated from Ethiopian coffee fermentation and assessment of sequence analysis of housekeeping genes for delineation of Leuconostoc species. Int J Syst Evol Microbiol 2007; 57:2952–2959 [View Article] [PubMed]
    [Google Scholar]
  6. De Bruyne K, Franz CM, Vancanneyt M, Schillinger U, Mozzi F et al. Pediococcus argentinicus sp. nov. from Argentinean fermented wheat flour and identification of Pediococcus species by pheS, rpoA and atpA sequence analysis. Int J Syst Evol Microbiol 2008; 58:2909–2916 [View Article] [PubMed]
    [Google Scholar]
  7. Chen Y-S, Otoguro M, Lin Y-H, Pan S-F, Ji S-H et al. Lactococcus formosensis sp. nov., a lactic acid bacterium isolated from yan-tsai-shin (fermented broccoli stems. Int J Syst Evol Microbiol 2014; 64:146–151 [View Article] [PubMed]
    [Google Scholar]
  8. Gu CT, Li CY, Yang LJ, Huo GC. Lactobacillus heilongjiangensis sp. nov., isolated from Chinese pickle. Int J Syst Evol Microbiol 2013; 63:4094–4099 [View Article] [PubMed]
    [Google Scholar]
  9. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  10. Kishino H, Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol 1989; 29:170–179 [View Article] [PubMed]
    [Google Scholar]
  11. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  12. Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 2015; 31:587–589 [View Article] [PubMed]
    [Google Scholar]
  13. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  14. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  15. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  16. Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R et al. The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities. Nucleic Acids Res 2020; 48:D606–D612 [View Article] [PubMed]
    [Google Scholar]
  17. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  18. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  19. Auch AF, von Jan M, Klenk H, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article]
    [Google Scholar]
  20. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001; 29:2607–2618 [View Article] [PubMed]
    [Google Scholar]
  21. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  22. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  23. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE, USA: Microbial ID Inc; 1990
    [Google Scholar]
  24. Parker CT, Tindall BJ, Garrity GM. International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2019; 69:S1–S111 [View Article] [PubMed]
    [Google Scholar]
  25. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014; 9:2 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.004980
Loading
/content/journal/ijsem/10.1099/ijsem.0.004980
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error