1887

Abstract

Species belonging to the genus have been isolated from environments such as soil, water and plant tissues. Many strains are known for their capability of degrading aromatic molecules and producing extracellular polymers. A Gram-stain-negative, strictly aerobic, motile, red-pigmented, oxidase-negative, catalase-positive, rod-shaped strain, designated DH-S5, has been isolated from pork steak packed under CO-enriched modified atmosphere. Cell diameters were 1.5×0.9 µm. Growth optima were at 30 °C and at pH 6.0. Phylogenetic analyses based on both complete 16S rRNA gene sequence and whole-genome sequence data revealed that strain DH-S5 belongs to the genus , being closely related to DSM 22537 (97.4 % gene sequence similarity), followed by X1 (97.4 %) and GZJT-2 (97.3 %). The DNA G+C content was 64.4 mol%. The digital DNA–DNA hybridization value between the isolate strain and DSM 22537 was 21.0 % with an average nucleotide identity value of 77.03 %. Strain DH-S5 contained Q-10 as the ubiquinone and major fatty acids were C cis 11 (39.3 %) and C cis 9 (12.5 %), as well as C (12.1 %) and C 2-OH (11.4 %). As for polar lipids, phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, dimethylphosphatidylethanolamine and sphingoglycolipid could be detected, alongside traces of monomethylphosphatidylethanolamine. Based on its phenotypic, chemotaxonomic and phylogenetic characteristics, strain DH-S5 (=DSM 110829=LMG 31606) is classified as a representative of the genus , for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004973
2021-08-26
2024-03-29
Loading full text...

Full text loading...

References

  1. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990; 34:99–119 [View Article] [PubMed]
    [Google Scholar]
  2. Feng G-D, Yang S-Z, Xiong X, Li H-P, Zhu H-H. Sphingomonas spermidinifaciens sp. nov., a novel bacterium containing spermidine as the major polyamine, isolated from an abandoned lead-zinc mine and emended descriptions of the genus Sphingomonas and the species Sphingomonas yantingensis and Sphingomonas japonica. Int J Syst Evol Microbiol 2017; 67:2160–2165 [View Article] [PubMed]
    [Google Scholar]
  3. White DC, Sutton SD, Ringelberg DB. The genus Sphingomonas: physiology and ecology. Curr Opin Biotechnol 1996; 7:301–306 [View Article] [PubMed]
    [Google Scholar]
  4. Busse H-J, Kämpfer P, Denner EBM. Chemotaxonomic characterisation of Sphingomonas. J Ind Microbiol Biotechnol 1999; 23:242–251 [View Article] [PubMed]
    [Google Scholar]
  5. Ayed L, Chaieb K, Cheref A, Bakhrouf A. Biodegradation of triphenylmethane dye Malachite Green by Sphingomonas paucimobilis. World J Microbiol Biotechnol 2009; 25:705–711 [View Article]
    [Google Scholar]
  6. Sasaki M, Maki J, Oshiman K, Matsumura Y, Tsuchido T. Biodegradation of bisphenol A by cells and cell lysate from Sphingomonas sp. strain AO1. Biodegradation 2005; 16:449–459 [View Article] [PubMed]
    [Google Scholar]
  7. Wittich R-M, Busse H-J, Kämpfer P, Tiirola M, Wieser M et al. Sphingobium aromaticiconvertens sp. nov., a xenobiotic-compound-degrading bacterium from polluted river sediment. Int J Syst Evol Microbiol 2007; 57:306–310 [View Article] [PubMed]
    [Google Scholar]
  8. Chen Q, Zhang J, Wang C-H, Jiang J, Kwon S-W et al. Novosphingobium chloroacetimidivorans sp. nov., a chloroacetamide herbicide-degrading bacterium isolated from activated sludge. Int J Syst Evol Microbiol 2014; 64:2573–2578 [View Article] [PubMed]
    [Google Scholar]
  9. Oelschlägel M, Rückert C, Kalinowski J, Schmidt G, Schlömann M et al. Sphingopyxis fribergensis sp. nov., a soil bacterium with the ability to degrade styrene and phenylacetic acid. Int J Syst Evol Microbiol 2015; 65:3008–3015 [View Article] [PubMed]
    [Google Scholar]
  10. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51:1405–1417 [View Article] [PubMed]
    [Google Scholar]
  11. Vartak NB, Lin CC, Cleary JM, Fagan MJ, Saier MH. Glucose metabolism in “Sphingomonas elodea”: pathway engineering via construction of a glucose-6-phosphate dehydrogenase insertion mutant. Microbiology (Reading) 1995; 141:2339–2350 [View Article] [PubMed]
    [Google Scholar]
  12. Lin CC, Casida LE. GELRITE as a gelling agent in media for the growth of thermophilic microorganisms. Appl Environ Microbiol 1984; 47:427–429 [View Article] [PubMed]
    [Google Scholar]
  13. Li H, Jiao X, Sun Y, Sun S, Feng Z et al. The preparation and characterization of a novel sphingan WL from marine Sphingomonas sp. Sci Rep 2016; 6:37899 [View Article] [PubMed]
    [Google Scholar]
  14. Ferreira ARV, Alves VD, Coelhoso IM. Polysaccharide-based membranes in food packaging applications. Membranes 2016; 6:27089372
    [Google Scholar]
  15. Ryan MP, Adley CC. Sphingomonas paucimobilis: a persistent Gram-negative nosocomial infectious organism. J Hosp Infect 2010; 75:153–157 [View Article]
    [Google Scholar]
  16. Muyzer G, Teske A, Wirsen CO, Jannasch HW. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 1995; 164:165–172 [View Article] [PubMed]
    [Google Scholar]
  17. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic Local Alignment Search Tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  18. Meier-Kolthoff JP, Göker M, Spröer C, Klenk H-P. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [View Article] [PubMed]
    [Google Scholar]
  19. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  20. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  21. Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol 1992; 9:678–687 [View Article] [PubMed]
    [Google Scholar]
  22. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  23. Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 2017; 27:737–746 [View Article] [PubMed]
    [Google Scholar]
  24. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34:3094–3100 [View Article] [PubMed]
    [Google Scholar]
  25. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  26. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM et al. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 2020; 11:468 [View Article] [PubMed]
    [Google Scholar]
  27. Lefort V, Desper R, Gascuel O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  28. Farris JS. Estimating phylogenetic trees from distance matrices. Am Natur 1972; 106:645–668 [View Article]
    [Google Scholar]
  29. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [View Article] [PubMed]
    [Google Scholar]
  30. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  32. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST. Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  33. Stolz A. Degradative plasmids from sphingomonads. FEMS Microbiol Lett 2014; 350:9–19 [View Article] [PubMed]
    [Google Scholar]
  34. Margesin R, Zhang D-C, Busse H-J. Sphingomonas alpina sp. nov., a psychrophilic bacterium isolated from alpine soil. Int J Syst Evol Microbiol 2012; 62:1558–1563 [View Article] [PubMed]
    [Google Scholar]
  35. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  36. Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article] [PubMed]
    [Google Scholar]
  37. Flegler A, Runzheimer K, Kombeitz V, Mänz AT, Heidler von Heilborn D et al. Arthrobacter bussei sp. nov., a pink-coloured organism isolated from cheese made of cow’s milk. Int J Syst Evol Microbiol 2020; 70:3027–3036 [View Article] [PubMed]
    [Google Scholar]
  38. Belcher JN. Industrial packaging developments for the global meat market. Meat Sci 2006; 74:143–148 [View Article] [PubMed]
    [Google Scholar]
  39. Kolari M, Nuutinen J, Salkinoja-Salonen MS. Mechanisms of biofilm formation in paper machine by Bacillus species: the role of Deinococcus geothermalis. J Ind Microbiol Biotechnol 2001; 27:343–351 [View Article] [PubMed]
    [Google Scholar]
  40. Akbar A, Chen C, Zhu L, Xin K, Cheng J et al. Sphingomonas hylomeconis sp. nov., isolated from the stem of Hylomecon japonica. Int J Syst Evol Microbiol 2015; 65:4025–4031 [View Article] [PubMed]
    [Google Scholar]
  41. Piao A-L, Feng X-M, Nogi Y, Han L, Li Y et al. Sphingomonas qilianensis sp. nov., Isolated from Surface Soil in the Permafrost Region of Qilian Mountains, China. Curr Microbiol 2016; 72:363–369 [View Article] [PubMed]
    [Google Scholar]
  42. Coico R. Gram staining. Curr Protoc Microbiol 2005Appendix 3 [View Article] [PubMed]
    [Google Scholar]
  43. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical Note 101. Newark, DE (USA: MIDI-Inc; 1990
    [Google Scholar]
  44. Derichs J, Kämpfer P, Lipski A. Pedobacter nutrimenti sp. nov., isolated from chilled food. Int J Syst Evol Microbiol 2014; 64:1310–1316 [View Article] [PubMed]
    [Google Scholar]
  45. Lipski A, Altendorf K. Identification of Heterotrophic Bacteria Isolated from Ammonia-supplied Experimental Biofilters. Syst Appl Microbiol 1997; 20:448–457 [View Article]
    [Google Scholar]
  46. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Meth 1984; 2:233–241 [View Article]
    [Google Scholar]
  47. Wiertz R, Schulz SC, Müller U, Kämpfer P, Lipski A. Corynebacterium frankenforstense sp. nov. and Corynebacterium lactis sp. nov., isolated from raw cow milk. Int J Syst Evol Microbiol 2013; 63:4495–4501 [View Article] [PubMed]
    [Google Scholar]
  48. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article] [PubMed]
    [Google Scholar]
  49. White T, Bursten S, Federighi D, Lewis RA, Nudelman E. High-resolution separation and quantification of neutral lipid and phospholipid species in mammalian cells and sera by multi-one-dimensional thin-layer chromatography. Anal Biochem 1998; 258:109–117 [View Article] [PubMed]
    [Google Scholar]
  50. Hölzl G, Sohlenkamp C, Vences-Guzmán MA, Gisch N. Headgroup hydroxylation by OlsE occurs at the C4 position of ornithine lipid and is widespread in proteobacteria and bacteroidetes. Chem Phys Lipids 2018; 213:32–38 [View Article] [PubMed]
    [Google Scholar]
  51. IUPAC-IUB Commission on Biochemical Nomenclature The nomenclature of lipids. Lipids 1977; 12:455–468 [View Article]
    [Google Scholar]
  52. Busse H-J, Denner EBM, Buczolits S, Salkinoja-Salonen M, Bennasar A et al. Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol 2003; 53:1253–1260 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004973
Loading
/content/journal/ijsem/10.1099/ijsem.0.004973
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error