1887

Abstract

A novel bacterium, designated strain Msb3, was recently isolated from leaves of the yam family plant (). Phylogenetic analysis based on the 16S rRNA gene sequence indicated that this strain belonged to the genus with as nearest validly named neighbour taxon (99.3 % sequence similarity towards the type strain). Earlier genome sequence analysis revealed a genome of 8.35 Mb in size with a G+C content of 62.5 mol%, which was distributed over two chromosomes and three plasmids. Here, we confirm that strain Msb3 represents a novel species. DNA–DNA hybridization and average nucleotide identity (OrthoANIu) analyses towards LB400 yielded 58.4 % dDDH and 94.5 % orthoANIu. Phenotypic and metabolic characterization revealed growth at 15 °C on tryptic soy agar, growth in the presence of 1 % NaCl and the lack of assimilation of phenylacetic acid as distinctive features. Together, these data demonstrate that strain Msb3 represents a novel species of the genus for which we propose the name sp. nov. The type strain is Msb3 (=LMG 31881, DSM 111632, CECT 30342).

  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004969
2021-09-20
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/9/ijsem004969.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004969&mimeType=html&fmt=ahah

References

  1. Sawana A, Adeolu M, Gupta RS. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 2014; 5:429 [View Article] [PubMed]
    [Google Scholar]
  2. Lim JH, Baek S-H, Lee S-T. Burkholderia sediminicola sp. nov., isolated from freshwater sediment. Int J Syst Evol Microbiol 2008; 58:565–569 [View Article] [PubMed]
    [Google Scholar]
  3. Aizawa T, Bao Ve N, Vijarnsorn P, Nakajima M, Sunairi M. Burkholderia acidipaludis sp. nov., aluminium-tolerant bacteria isolated from Chinese water chestnut (Eleocharis dulcis) growing in highly acidic swamps in South-East Asia. Int J Syst Evol Microbiol 2010; 60:2036–2041 [View Article] [PubMed]
    [Google Scholar]
  4. Aizawa T, Ve NB, Nakajima M, Sunairi M. Burkholderia heleia sp. nov., a nitrogen-fixing bacterium isolated from an aquatic plant, Eleocharis dulcis, that grows in highly acidic swamps in actual acid sulfate soil areas of Vietnam. Int J Syst Evol Microbiol 2010; 60:1152–1157 [View Article] [PubMed]
    [Google Scholar]
  5. Rusch A, Islam S, Savalia P, Amend JP. Burkholderia insulsa sp. nov., a facultatively chemolithotrophic bacterium isolated from an arsenic-rich shallow marine hydrothermal system. Int J Syst Evol Microbiol 2015; 65:189–194 [View Article] [PubMed]
    [Google Scholar]
  6. Herpell JB, Schindler F, Bejtović M, Fragner L, Diallo B et al. The potato yam phyllosphere ectosymbiont Paraburkholderia sp. Msb3 is a potent growth promotor in tomato. Front Microbiol 2020; 11:581 [View Article]
    [Google Scholar]
  7. Deris ZZ, Van Rostenberghe H, Habsah H, Noraida R, Tan GC et al. First isolation of Burkholderia tropica from a neonatal patient successfully treated with imipenem. Int J Infect Dis 2010; 14:e73–4 [View Article]
    [Google Scholar]
  8. Moulin L, Munive A, Dreyfus B, Boivin-Masson C. Nodulation of legumes by members of the β-subclass of Proteobacteria. Nature 2001; 411:948–950 [View Article] [PubMed]
    [Google Scholar]
  9. Gao Z-H, Zhong S-F, Lu Z-E, Xiao S-Y, Qiu L-H. Paraburkholderia caseinilytica sp. nov., isolated from the pine and broad-leaf mixed forest soil. Int J Syst Evol Microbiol 2018; 68:1963–1968 [View Article] [PubMed]
    [Google Scholar]
  10. Gao Z-H, Ruan S-L, Huang Y-X, Lv Y-Y, Qiu L-H. Paraburkholderia phosphatilytica sp. nov., a phosphate-solubilizing bacterium isolated from forest soil. Int J Syst Evol Microbiol 2019; 69:196–202 [View Article] [PubMed]
    [Google Scholar]
  11. Otsuka Y, Muramatsu Y, Nakagawa Y, Matsuda M, Nakamura M et al. Burkholderia oxyphila sp. nov., a bacterium isolated from acidic forest soil that catabolizes (+)-catechin and its putative aromatic derivatives. Int J Syst Evol Microbiol 2011; 61:249–254 [View Article] [PubMed]
    [Google Scholar]
  12. Wilhelm RC, Murphy SJL, Feriancek NM, Karasz DC, DeRito CM et al. Paraburkholderia madseniana sp. nov., a phenolic acid-degrading bacterium isolated from acidic forest soil. Int J Syst Evol Microbiol 2020; 70:2137–2146 [View Article] [PubMed]
    [Google Scholar]
  13. Yang H-C, Im W-T, Kim KK, An D-S, Lee S-T. Burkholderia terrae sp. nov., isolated from a forest soil. Int J Syst Evol Microbiol 2006; 56:453–457 [View Article] [PubMed]
    [Google Scholar]
  14. Kim S, Gong G, Min Woo H, Kim Y, Um Y. Burkholderia jirisanensis sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2016; 66:1260–1267 [View Article] [PubMed]
    [Google Scholar]
  15. Chain PS, Denef VJ, Konstantinidis KT, Vergez LM, Agullo L et al. Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci U S A 2006; 103:15280–15287 [View Article] [PubMed]
    [Google Scholar]
  16. Coenye T, Henry D, Speert DP, Vandamme P. Burkholderia phenoliruptrix sp. nov., to Accommodate the 2,4,5-Trichlorophenoxyacetic Acid and Halophenol-Degrading Strain AC1100. Syst Appl Microbiol 2004; 27:623–627 [View Article] [PubMed]
    [Google Scholar]
  17. González PS, Ontañon OM, Armendariz AL, Talano MA, Paisio CE et al. Brassica napus hairy roots and rhizobacteria for phenolic compounds removal. Environ Sci Pollut Res Int 2013; 20:1310–1317 [View Article] [PubMed]
    [Google Scholar]
  18. Goris J, De Vos P, Caballero-Mellado J, Park J, Falsen E et al. Classification of the biphenyl- and polychlorinated biphenyl-degrading strain LB400T and relatives as Burkholderia xenovorans sp. nov. Int J Syst Evol Microbiol 2004; 54:1677–1681 [View Article] [PubMed]
    [Google Scholar]
  19. Lee Y, Jeon CO. Paraburkholderia aromaticivorans sp. nov., an aromatic hydrocarbon-degrading bacterium, isolated from gasoline-contaminated soil. Int J Syst Evol Microbiol 2018; 68:1251–1257 [View Article] [PubMed]
    [Google Scholar]
  20. Esmaeel Q, Miotto L, Rondeau M, Leclère V, Clément C et al. Paraburkholderia phytofirmans PsJN-Plants Interaction: from perception to the induced mechanisms. Front Microbiol 2018; 9:2093 [View Article] [PubMed]
    [Google Scholar]
  21. Mitter B, Petric A, Shin MW, Chain PS, Hauberg-Lotte L et al. Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front Plant Sci 2013; 4:120 [View Article] [PubMed]
    [Google Scholar]
  22. Rahman M, Sabir AA, Mukta JA, Khan MMA, Mohi-Ud-Din M et al. Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit. Sci Rep 2018; 8:2504 [View Article] [PubMed]
    [Google Scholar]
  23. Sessitsch A, Coenye T, Sturz AV, Vandamme P, Barka EA et al. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microbiol 2005; 55:1187–1192 [View Article] [PubMed]
    [Google Scholar]
  24. Vandamme P, Opelt K, Knochel N, Berg C, Schonmann S et al. Burkholderia bryophila sp. nov. and Burkholderia megapolitana sp. nov., moss-associated species with antifungal and plant-growth-promoting properties. Int J Syst Evol Microbiol 2007; 57:2228–2235 [View Article] [PubMed]
    [Google Scholar]
  25. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  26. Aizawa T, Vijarnsorn P, Nakajima M, Sunairi M. Burkholderia bannensis sp. nov., an acid-neutralizing bacterium isolated from torpedo grass (Panicum repens) growing in highly acidic swamps; 2011; 611645–1650
  27. Vacca DJ, Bleam WF, Hickey WJ. Isolation of soil bacteria adapted to degrade humic acid-sorbed phenanthrene. Appl Environ Microbiol 2005; 71:3797–3805 [View Article] [PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Goker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. Bmc Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  30. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286
    [Google Scholar]
  31. Dupont CL, Rusch DB, Yooseph S, Lombardo MJ, Richter RA et al. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. Isme J, Article 2012; 6:1186–1199
    [Google Scholar]
  32. Ankenbrand MJ, Keller A. bcgTree: automatized phylogenetic tree building from bacterial core genomes. Genome 2016; 59:783–791 [View Article] [PubMed]
    [Google Scholar]
  33. Letunic I, Bork P. Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [View Article]
    [Google Scholar]
  34. Eren AM, Kiefl E, Shaiber A, Veseli I, Miller SE et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat Microbiol 2021; 6:3–6 [View Article] [PubMed]
    [Google Scholar]
  35. Galperin MY, Wolf YI, Makarova KS, Vera Alvarez R, Landsman D et al. COG database update: Focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Research 2020; 49:D274–D281
    [Google Scholar]
  36. Nagy I, Schoofs G, Compernolle F, Proost P, Vanderleyden J. Degradation of the thiocarbamate herbicide EPTC (S-ethyl dipropylcarbamothioate) and biosafening by Rhodococcus sp. strain NI86/21 involve an inducible cytochrome P-450 system and aldehyde dehydrogenase. J Bacteriol 1995; 177:676–687 [View Article] [PubMed]
    [Google Scholar]
  37. Hickey WJ, Chen S, Zhao J. The phn Island: A new genomic island encoding catabolism of polynuclear aromatic hydrocarbons. Front Microbiol 2012; 3:125 [View Article] [PubMed]
    [Google Scholar]
  38. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research 2015; 44:D457–D462
    [Google Scholar]
  39. Ricci JN, Coleman ML, Welander PV, Sessions AL, Summons RE et al. Diverse capacity for 2-methylhopanoid production correlates with a specific ecological niche. <span data-cid="1627561378" id="f99dd15f-0fd6-490b-ac7c-66f43ba8938a" title="UPPERCASE Added by Lavanya (PREEDITOR) - 07/29/2021 6 8:675–684 [View Article] [PubMed]
    [Google Scholar]
  40. Malott RJ, Baldwin A, Mahenthiralingam E, Sokol PA. Characterization of the cciIR quorum-sensing system in Burkholderia cenocepacia. Infect Immun 2005; 73:4982–4992 [View Article] [PubMed]
    [Google Scholar]
  41. Subramoni S, Sokol PA. Quorum sensing systems influence Burkholderia cenocepacia virulence. Future Microbiol 2012; 7:1373–1387 [View Article] [PubMed]
    [Google Scholar]
  42. Xie M, Chung CY-L, Li M-W, Wong F-L, Wang X et al. A reference-grade wild soybean genome. Nat Commun 2019; 10:1216 [View Article] [PubMed]
    [Google Scholar]
  43. MacFaddin JF. Biochemical Tests for Identification of Medical Bacteria, 3rd ed. Baltimore (Md: Williams and Wilkins; 2000
    [Google Scholar]
  44. Dumolin C, Aerts M, Verheyde B, Schellaert S, Vandamme T et al. Introducing SPeDE: high-throughput dereplication and accurate determination of microbial diversity from matrix-assisted laser desorption-ionization time of flight mass spectrometry data. mSystems 2019; 4:e00437-00419 [View Article] [PubMed]
    [Google Scholar]
  45. Akimowicz M, Bucka-Kolendo J. MALDI-TOF MS - application in food microbiology. Acta Biochim Pol 2020; 67:327–332 [View Article] [PubMed]
    [Google Scholar]
  46. Doern CD, Butler-Wu SM. Emerging and future applications of matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry in the clinical microbiology laboratory: A report of the association for molecular pathology. J Mol Diagn 2016; 18:789–802 [View Article] [PubMed]
    [Google Scholar]
  47. Rahi P, Prakash O, Shouche YS. Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) based Microbial identifications: Challenges and scopes for microbial ecologists. Front Microbiol 2016; 7:1359
    [Google Scholar]
  48. Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article] [PubMed]
    [Google Scholar]
  49. Strohalm M, Kavan D, Novák P, Volný M, Havlícek V. Mmass 3: A cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem 2010; 82:4648–4651 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004969
Loading
/content/journal/ijsem/10.1099/ijsem.0.004969
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error