1887

Abstract

This study describes JE7A12 (=ATCC TSD-225=NCTC 14479), an isolate from the ruminal content of a dairy cow. Phenotypic and genotypic traits of the isolate were explored. JE7A12 was found to be a strictly anaerobic, catalase-negative, oxidase-negative, coccoid bacterium that grows in chains. The API 50 CH carbon source assay detected fermentation of -glucose, -fructose, -galactose, glycogen and starch. HPLC showed acetate to be the major fermentation product as a result of carbohydrate fermentation. Phylogenetic analysis of JE7A12 based on 16S rRNA nucleotide sequence and amino acid sequences from the whole genome indicated a divergent lineage from the closest neighbours in the genus . The results of 16S rRNA sequence comparison, whole genome average nucleotide identity (ANI) and DNA G+C content data indicate that JE7A12 represents a novel species which we propose the name with JE7A12 as the type strain.

Keyword(s): genome , rumen and Ruminococcus
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004924
2021-08-11
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/8/ijsem004924.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004924&mimeType=html&fmt=ahah

References

  1. Sijpesteijn AK. Cellulose-decomposing bacteria from the rumen of cattle. Antonie van Leeuwenhoek 1949; 15:49–52 [View Article]
    [Google Scholar]
  2. Sijpesteijn AK. On Ruminococcus flavefaciens, a cellulose-decomposing bacterium from the rumen of sheep and cattle. J Gen Microbiol 1951; 5:869–879 [View Article] [PubMed]
    [Google Scholar]
  3. Ezaki T. Ruminococcus. In Bergey’s Manual of Systematics of Archaea and Bacteria 2015 pp 1–5
    [Google Scholar]
  4. Liu C, Finegold SM, Song Y, Lawson PA. Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov., Blautia producta comb. nov., Blautia schinkii comb. nov. and description of Blautia wexlerae sp. nov., isolated from human faeces [Internet]. Int J Syst Evol Microbiol 2008; 58:1896–1902 [View Article] [PubMed]
    [Google Scholar]
  5. Henning PH, Horn CH, Leeuw KJ, Meissner HH, Hagg FM. Effect of ruminal administration of the lactate-utilizing strain Megasphaera elsdenii (Me) NCIMB 41125 on abrupt or gradual transition from forage to concentrate diets. Anim Feed Sci Tech 2010; 157:20–29
    [Google Scholar]
  6. Jeyanathan J, Martin C, Eugène M, Ferlay A, Popova M et al. Bacterial direct-fed microbials fail to reduce methane emissions in primiparous lactating dairy cows. J Anim Sci Biotechnol 2019; 10:41 [View Article] [PubMed]
    [Google Scholar]
  7. Krehbiel CR, Rust SR, Zhang G, Gilliland SE. Bacterial direct-fed microbials in ruminant diets: Performance response and mode of action. J Anim Sci 2003; 81:E120–32
    [Google Scholar]
  8. McAllister TA, Beauchemin KA, Alazzeh AY, Baah J, Teather RM et al. Review: The use of direct fed microbials to mitigate pathogens and enhance production in cattle. Can J Anim Sci 2011; 91:193–211 [View Article]
    [Google Scholar]
  9. Nocek JE, Kautz WP, Leedle JAZ, Allman JG. Ruminal supplementation of direct-fed microbials on diurnal pH variation and in situ digestion in dairy cattle. J Dairy Sci 2002; 85:429–433 [View Article] [PubMed]
    [Google Scholar]
  10. Qiao GH, Shan AS, Ma N, Ma QQ, Sun ZW. Effect of supplemental Bacillus cultures on rumen fermentation and milk yield in Chinese Holstein cows. J Anim Physiol Anim Nutr 2010; 94:429–436
    [Google Scholar]
  11. Weinberg ZG, Shatz O, Chen Y, Yosef E, Nikbahat M et al. Effect of lactic acid bacteria inoculants on in vitro digestibility of wheat and corn silages. J Dairy Sci 2007; 90:4754–4762 [View Article] [PubMed]
    [Google Scholar]
  12. Yoon IK, Stern MD. Influence of direct-fed microbials on ruminal microbial fermentation and performance of ruminants - A Review. Asian Australas J Anim Sci 1995; 8:533–555 [View Article]
    [Google Scholar]
  13. Leitch ECM, Walker AW, Duncan SH, Holtrop G, Flint HJ. Selective colonization of insoluble substrates by human faecal bacteria. Environ Microbiol 2007; 9:667–679 [View Article] [PubMed]
    [Google Scholar]
  14. Ze X, Duncan SH, Louis P, Flint HJ. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 2012; 6:1535–1543 [View Article] [PubMed]
    [Google Scholar]
  15. Chassard C, Delmas E, Robert C, Lawson PA, Bernalier-Donadille A. Ruminococcus champanellensis sp. nov., a cellulose-degrading bacterium from human gut microbiota. Int J Syst Evol Microbiol 2012; 62:138–143 [View Article] [PubMed]
    [Google Scholar]
  16. Moraïs S, Mizrahi I. The road not taken: The rumen microbiome, functional groups, and community states. Trends Microbiol 2019; 27:538–549 [View Article] [PubMed]
    [Google Scholar]
  17. Lay C, Sutren M, Rochet V, Saunier K, Doré J et al. Design and validation of 16S rRNA probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota. Environ Microbiol 2005; 7:933–946 [View Article] [PubMed]
    [Google Scholar]
  18. Moore WE, Holdeman LV. Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol 1974; 27:961–979 [View Article] [PubMed]
    [Google Scholar]
  19. Wegmann U, Louis P, Goesmann A, Henrissat B, Duncan SH et al. Complete genome of a new Firmicutes species belonging to the dominant human colonic microbiota (“Ruminococcus bicirculans”) reveals two chromosomes and a selective capacity to utilize plant glucans. Environ Microbiol 2014; 16:2879–2890 [View Article] [PubMed]
    [Google Scholar]
  20. Henderson G, Cox F, Ganesh S, Jonker A, Young W et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep 2015; 5:14567 [View Article] [PubMed]
    [Google Scholar]
  21. Xia Y, Kong Y, Seviour R, Yang H-E, Forster R et al. In situ identification and quantification of starch-hydrolyzing bacteria attached to barley and corn grain in the rumen of cows fed barley-based diets. FEMS Microbiol Ecol 2015; 91:fiv077 [View Article] [PubMed]
    [Google Scholar]
  22. Dai X, Tian Y, Li J, Luo Y, Liu D et al. Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in the cow rumen. Appl Environ Microbiol 2015; 81:1375–1386 [View Article] [PubMed]
    [Google Scholar]
  23. Grubb JA, Dehority BA. Variation in colony counts of total viable anaerobic rumen bacteria as influenced by media and cultural methods. Appl Environ Microbiol 1976; 31:262–267 [View Article] [PubMed]
    [Google Scholar]
  24. Beveridge TJ. Mechanism of gram variability in select bacteria. J Bacteriol 1990; 172:1609–1620 [View Article]
    [Google Scholar]
  25. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. mega X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  26. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 2014; 42:D633–42 [View Article] [PubMed]
    [Google Scholar]
  27. Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 2013; 4:2304 [View Article] [PubMed]
    [Google Scholar]
  28. Jain M, Koren S, Miga KH, Quick J, Rand AC et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol 2018; 36:338–345 [View Article] [PubMed]
    [Google Scholar]
  29. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k -mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article]
    [Google Scholar]
  30. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  31. George S, Pankhurst L, Hubbard A, Votintseva A, Stoesser N et al. Resolving plasmid structures in Enterobacteriaceae using the MinION nanopore sequencer: assessment of MinION and MinION/Illumina hybrid data assembly approaches. Microb Genom [Internet] 2017
    [Google Scholar]
  32. Heuer H, Krsek M, Baker P, Smalla K, Wellington EM. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 1997; 63:3233–3241 [View Article] [PubMed]
    [Google Scholar]
  33. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  34. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  35. Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL et al. MUMmer4: A fast and versatile genome alignment system. PLoS Comput Biol 2018; 14:e1005944 [View Article] [PubMed]
    [Google Scholar]
  36. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 2016; 8:12–24 [View Article]
    [Google Scholar]
  37. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  38. Avgustin G, Wallace RJ, Flint HJ. Phenotypic diversity among ruminal isolates of Prevotella ruminicola: proposal of Prevotella brevis sp. nov., Prevotella bryantii sp. nov., and Prevotella albensis sp. nov. and redefinition of Prevotella ruminicola. Int J Syst Bacteriol 1997; 47:284–288 [View Article] [PubMed]
    [Google Scholar]
  39. La Reau AJ, Suen G. The Ruminococci: Key symbionts of the gut ecosystem. J Microbiol 2018; 56:199–208 [View Article]
    [Google Scholar]
  40. Moore WEC, Cato EP, Holdeman LV. Ruminococcus bromii sp. n. and emendation of the description of Ruminococcus Sijpestein. Int J Syst Bacteriol 1972; 22:78–80
    [Google Scholar]
  41. Mukhopadhya I, Moraïs S, Laverde-Gomez J, Sheridan PO, Walker AW et al. Sporulation capability and amylosome conservation among diverse human colonic and rumen isolates of the keystone starch-degrader Ruminococcus bromii. Environ Microbiol 2018; 20:324–336 [View Article] [PubMed]
    [Google Scholar]
  42. Domingo M-C, Huletsky A, Boissinot M, Bernard KA, Picard FJ et al. Ruminococcus gauvreauii sp. nov., a glycopeptide-resistant species isolated from a human faecal specimen. Int J Syst Evol Microbiol 2008; 58:1393–1397 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004924
Loading
/content/journal/ijsem/10.1099/ijsem.0.004924
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error