1887

Abstract

In the present study, four bacterial strains, two (S-713 and 406) isolated from faecal samples of Tibetan antelopes and the other two (S-531 and 1598) from leaves of dandelion collected on the Qinghai–Tibet Plateau of PR China, were analysed using a polyphasic approach. All four isolates were aerobic, rod-shaped, non-motile, oxidase-negative, Gram-stain-positive and catalase-positive. According to four phylogenetic trees, strain pairs S-713/406 and S-531/1598 form two independent branches belonging to the genus , and are closest to , , , , and . Although sharing MK8-(H) as their major isoprenoid quinone, strains S-713 and S-531 contained C 9 (24.64 and 16.34 %) and iso-C (9.74 and 29.38 %), respectively, as their main fatty acids, with remarkable differences in their biochemical profiles but only slight ones in their optimal growth conditions. The chromosomes of strains S-713 and S-531 were 4 207 844 bp (G+C content, 73.0 mol%) and 4 809 817 bp (G+C content, 72.5 mol%), respectively. Collectively, the two strain pairs represent two separate novel species of the genus , for which the names sp. nov. and sp. nov. are proposed, with S-713 (=JCM 33698=CGMCC 4.7660) and S-531 (=JCM 33468=CGMCC 4.7659) as the respective type strains.

Funding
This study was supported by the:
  • Research Units of Discovery of Unknown Bacteria and Function (Award 2018RU010)
    • Principle Award Recipient: JianguoXu
  • National Key R&D Program of China (Award 2019YFC1200505)
    • Principle Award Recipient: JingYang
  • National Key R&D Program of China (Award 2019YFC1200500)
    • Principle Award Recipient: JingYang
  • National Science and Technology Major Project of China (Award 2017ZX10303405-005-002)
    • Principle Award Recipient: HanZheng
  • National Science and Technology Major Project of China (Award 2017ZX10303405-002)
    • Principle Award Recipient: HanZheng
  • National Science and Technology Major Project of China (Award 2018ZX10712001-018)
    • Principle Award Recipient: ShanLu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004920
2021-07-27
2024-04-19
Loading full text...

Full text loading...

References

  1. Prauser H. Nocardioides, a new genus of the order Actinomycetales. Int J Syst Evol Microbiol 1976; 26:58–65
    [Google Scholar]
  2. Hwang Y-J, Son J-S, Lee S-Y, He Y, Jo Y et al. Nocardioides sambongensis sp. nov., isolated from Dokdo Islands soil. Int J Syst Evol Microbiol 2020; 70:16–22 [View Article] [PubMed]
    [Google Scholar]
  3. Chen P, Fu Y, Cai Y, Lin Z. Nocardioides guangzhouensis sp. nov., an actinobacterium isolated from soil. Int J Syst Evol Microbiol 2020; 70:112–119 [View Article] [PubMed]
    [Google Scholar]
  4. Yan Z-. F, Lin P, Li C-. T, Kook M, Yi T-. H. Nocardioides pelophilus sp. nov., isolated from freshwater mud. Int J Syst Evol Microbiol 2018; 68:1942–1948 [View Article] [PubMed]
    [Google Scholar]
  5. Deng S, Chang X, Zhang Y, Ren L, Jiang F. Nocardioides antarcticus sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2015; 65:2615–2621 [View Article] [PubMed]
    [Google Scholar]
  6. Liu Q, Xin YH, Liu HC, Zhou YG, Wen Y. Nocardioides szechwanensis sp. nov. and Nocardioides psychrotolerans sp. nov., isolated from a glacier. Int J Syst Evol Microbiol 2013; 63:129–133 [View Article] [PubMed]
    [Google Scholar]
  7. Zhang LY, Ming H, Zhao ZL, Ji WL, Salam N et al. Nocardioides allogilvus sp. nov., a novel actinobacterium isolated from a karst cave. Int J Syst Evol Microbiol 2018; 68:2485–2490 [View Article] [PubMed]
    [Google Scholar]
  8. Qu J-. H, Li X-. D, Li H-. F. Nocardioides taihuensis sp. nov., isolated from fresh water lake sediment. Int J Syst Evol Microbiol 2017; 67:3535–3539 [View Article] [PubMed]
    [Google Scholar]
  9. Toth EM, Keki Z, Makk J, Homonnay ZG, Marialigeti K. Nocardioides hungaricus sp. nov., isolated from a drinking water supply system. Int J Syst Evol Microbiol 2011; 61:549–553 [View Article] [PubMed]
    [Google Scholar]
  10. Yoon JH, Cho YG, Lee ST, Suzuki K, Nakase T. Nocardioides nitrophenolicus sp. nov., a p-nitrophenol-degrading bacterium. Int J Syst Bacteriol 1999; 49:675–680 [View Article] [PubMed]
    [Google Scholar]
  11. Dong K, Lu S, Yang J, Pu J, Lai XH. Nocardioides jishulii sp. nov.,isolated from faeces of Tibetan gazelle (Procapra picticaudata. Int J Syst Evol Microbiol 2020; 70:3665–3672 [View Article] [PubMed]
    [Google Scholar]
  12. Huang Y, Wang X, Yang J, Lu S, Lai XH. Nocardioides yefusunii sp. nov., isolated from Equus kiang (Tibetan wild ass) faeces. Int J Syst Evol Microbiol 2019; 69:3629–3635 [View Article] [PubMed]
    [Google Scholar]
  13. Wang X, Yang J, Lu S, Lai XH, Jin D. Nocardioides houyundeii sp. nov., isolated from Tibetan antelope faeces. Int J Syst Evol Microbiol 2018; 68:3874–3880 [View Article] [PubMed]
    [Google Scholar]
  14. Zhang S, Wang X, Yang J, Lu S, Lai XH. Nocardioides dongxiaopingii sp. nov., isolated from leaves of Lamiophlomis rotata on the Qinghai-Tibet Plateau. Int J Syst Evol Microbiol 2020; 70:3234–3240 [View Article] [PubMed]
    [Google Scholar]
  15. Liu YH, Fang BZ, Mohamad OAA, Zhang YG, Jiao JY. Nocardioides ferulae sp. nov., isolated from root of an endangered medicinal plant Ferula songorica Pall. ex Spreng. Int J Syst Evol Microbiol 2019; 69:1253–1258 [View Article] [PubMed]
    [Google Scholar]
  16. Evtushenko LI, Krausova VI, Yoon J-H. Nocardioides. Trujillo M, Dedysh S, DeVos P, Hedlund B, Kämpfer P. eds In Bergey’s Manual of Systematics of Archaea and Bacteria 2015 pp 1–81
    [Google Scholar]
  17. Liu S, Jin D, Lan R, Wang Y, Meng Q et al. Escherichia marmotae sp. nov., isolated from faeces of Marmota himalayana. Int J Syst Evol Microbiol 2015; 65:2130–2134 [View Article] [PubMed]
    [Google Scholar]
  18. Kumar S, Stecher G, Tamura K. Mega7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  19. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  20. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article] [PubMed]
    [Google Scholar]
  21. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 2012; 61:1061–1067 [View Article] [PubMed]
    [Google Scholar]
  22. Yoon S-H, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  23. Jin D, Chen C, Li L, Lu S, Li Z et al. Dynamics of fecal microbial communities in children with diarrhea of unknown etiology and genomic analysis of associated Streptococcus lutetiensis. BMC Microbiol 2013; 13:141 [View Article] [PubMed]
    [Google Scholar]
  24. Berlin K, Koren S, Chin CS, Drake JP, Landolin JM et al. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 2015; 33:623–630 [View Article] [PubMed]
    [Google Scholar]
  25. Richter M, Rossello-Mora R, Oliver Glockner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  26. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of nocardia and related bacteria. Int J Syst Evol Microbiol 1977; 27:104–117
    [Google Scholar]
  27. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  28. Tamaoka J. Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. Methods Enzymol 1986; 123:251–256 [View Article] [PubMed]
    [Google Scholar]
  29. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 2006; 5:2359–2367 [View Article]
    [Google Scholar]
  30. Hu Q-W, Chu X, Xiao M, Li C-T, Yan Z-F et al. Arthrobacter deserti sp. nov., isolated from a desert soil sample. Int J Syst Evol Microbiol 2016; 66:2035–2040 [View Article] [PubMed]
    [Google Scholar]
  31. Zhang J, Ma Y, Yu H. Nocardioides lianchengensis sp. nov., an actinomycete isolated from soil. Int J Syst Evol Microbiol 2012; 62:2698–2702 [View Article] [PubMed]
    [Google Scholar]
  32. Yoon JH, Kim IG, Lee MH, Oh TK. Nocardioides kribbensis sp. nov., isolated from an alkaline soil. Int J Syst Evol Microbiol 2005; 55:1611–1614 [View Article] [PubMed]
    [Google Scholar]
  33. Park SC, Baik KS, Kim MS, Chun J, Seong CN. Nocardioides dokdonensis sp. nov., an actinomycete isolated from sand sediment. Int J Syst Evol Microbiol 2008; 58:2619–2623 [View Article] [PubMed]
    [Google Scholar]
  34. Kim HM, Choi DH, Hwang CY, Cho BC. Nocardioides salarius sp. nov., isolated from seawater enriched with zooplankton. Int J Syst Evol Microbiol 2008; 58:2056–2064 [View Article] [PubMed]
    [Google Scholar]
  35. Lee DW, Hyun CG, Lee SD. Nocardioides marinisabuli sp. nov., a novel actinobacterium isolated from beach sand. Int J Syst Evol Microbiol 2007; 57:2960–2963 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004920
Loading
/content/journal/ijsem/10.1099/ijsem.0.004920
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error