1887

Abstract

An aerobic, Gram-stain-negative, weak-motile, short-rod-shaped bacterial strain, designated JBR3-12, was isolated from halophyte plants, and its taxonomic position was investigated by using a polyphasic taxonomic approach. The strain produced a pink pigment on tryptic soy agar and grew optimally at 25 °C, pH 8 and in the presence of 3 % (w/v) NaCl. Results of phylogenetic analysis based on 16S rRNA gene sequences showed that strain JBR3-12 formed a lineage within the genus and was most closely related to DS-27 (98.0 %) and PB92 (97.6 %). The DNA G+C content of the genome was 41.3 mol%; the whole genome length was 5 426 070 bp. The major fatty acids of JBR3-12 were iso-C, summed feature 3 (comprising C 6 and/or C 7) and iso-C 3-OH. The predominant polar lipid was phosphatidylethanolamine. The predominant quinone was menaquinone-7. Based on its phenotypic, phylogenetic and genotypic features, strain JBR3-12 is proposed to represent a novel species of the genus , for which the name is sp. nov. The type strain is JBR3-12 (=KCTC 82363=NBRC 114901).

Funding
This study was supported by the:
  • Korea Research Institute of Bioscience and Biotechnology (Award KGM5282122)
    • Principle Award Recipient: JiyoungLee
  • National Research Foundation of Korea (Award Project No. NRF-2020R111A2072308)
    • Principle Award Recipient: JiyoungLee
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004915
2021-07-23
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/7/ijsem004915.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004915&mimeType=html&fmt=ahah

References

  1. Steyn PL, Segers P, Vancanneyt M, Sandra P, Kersters K et al. Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 1998; 48 Pt 1:165–177 [View Article] [PubMed]
    [Google Scholar]
  2. Dahal RH, Chaudhary DK, Kim DU, Kim J. Nine novel psychrotolerant species of the genus Pedobacter isolated from Arctic soil with potential antioxidant activities. Int J Syst Evol Microbiol 2020; 70:2537–2553 [View Article] [PubMed]
    [Google Scholar]
  3. Gallego V, Garcia MT, Ventosa A. Pedobacter aquatilis sp. nov., isolated from drinking water, and emended description of the genus Pedobacter. Int J Syst Evol Microbiol 2006; 56:1853–1858 [View Article] [PubMed]
    [Google Scholar]
  4. Gao JL, Sun P, Mao XJ, Du YL, Liu BY et al. Pedobacter zeae sp. nov., an endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 2017; 67:231–236 [View Article]
    [Google Scholar]
  5. Gordon NS, Valenzuela A, Adams SM, Ramsey PW, Pollock JL et al. Pedobacter nyackensis sp. nov., Pedobacter alluvionis sp. nov. and Pedobacter borealis sp. nov., isolated from Montana flood-plain sediment and forest soil. Int J Syst Evol Microbiol 2009; 59:1720–1726 [View Article] [PubMed]
    [Google Scholar]
  6. He XY, Li N, Chen XL, Zhang YZ, Zhang X-Y et al. Pedobacter indicus sp. nov., isolated from deep-sea sediment. Antonie van Leeuwenhoek 2020; 113:357–364 [View Article]
    [Google Scholar]
  7. Yang Z, Xu J, Sheng M, Qiu J, Zhu J et al. Pedobacter puniceum sp. nov. isolated from sludge. Curr Microbiol 2020; 77:4186–4191 [View Article]
    [Google Scholar]
  8. Margesin R, Sproer C, Schumann P, Schinner F. Pedobacter cryoconitis sp. nov., a facultative psychrophile from alpine glacier cryoconite. Int J Syst Evol Microbiol 2003; 53:1291–1296 [View Article] [PubMed]
    [Google Scholar]
  9. Zhou Z, Jiang F, Wang S, Peng F, Dai J et al. Pedobacter arcticus sp. nov., a facultative psychrophile isolated from Arctic soil, and emended descriptions of the genus Pedobacter, Pedobacter heparinus, Pedobacter daechungensis, Pedobacter terricola, Pedobacter glucosidilyticus and Pedobacter lentus. Int J Syst Evol Microbiol 2012; 62:1963–1969 [View Article] [PubMed]
    [Google Scholar]
  10. Wei Y, Wang B, Zhang L, Zhang J, Chen S. Pedobacter yulinensis sp. nov., isolated from sandy soil, and emended description of the genus Pedobacter. Int J Syst Evol Microbiol 2018; 68:2523–2529 [View Article] [PubMed]
    [Google Scholar]
  11. Jiang L, Wang D, Lee JS, Kim DH, Jeong JC et al. Jejubacter calystegiae gen. nov., sp. nov., moderately halophilic, a new member of the family Enterobacteriaceae, isolated from beach morning glory. J Microbiol 2020; 58:357–366 [View Article] [PubMed]
    [Google Scholar]
  12. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  13. Hall TA. Bioedit: a User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/nt. Nucleic Acids Symposium Series London: Information Retrieval Ltd; 1999 pp c1979–c2000
    [Google Scholar]
  14. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  16. Rzhetsky A, Nei M. A Simple Method for Estimating and Testing Minimum-Evolution Trees 1992
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  18. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  19. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  20. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article]
    [Google Scholar]
  21. Wilson KH, Blitchington RB, Greene RC. Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol 1990; 28:1942–1946 [View Article] [PubMed]
    [Google Scholar]
  22. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article] [PubMed]
    [Google Scholar]
  23. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466
    [Google Scholar]
  24. Lee I, Chalita M, Ha S-M, Na S-I, Yoon SH et al. Contest16S: An algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article]
    [Google Scholar]
  25. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  26. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 2017; 45:D353–D361 [View Article] [PubMed]
    [Google Scholar]
  27. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  28. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 186:1471–2105 [View Article]
    [Google Scholar]
  29. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article]
    [Google Scholar]
  30. Li Z, Mertens KN, Nezan E, Chomerat N, Bilien G et al. Discovery of a New Clade Nested Within the Genus Alexandrium (Dinophyceae): Morpho-molecular Characterization of Centrodinium punctatum (Cleve) F.J.R Taylor. Protist; 2019 pp 168–186 [View Article]
    [Google Scholar]
  31. Jiang L, Lim CJ, Kim SG, Jeong JC, Kim CY et al. Saccharibacillus brassicae sp. nov., an endophytic bacterium isolated from kimchi cabbage (Brassica rapa subsp. pekinensis) seeds. J Microbiol 2020; 58:24–29 [View Article] [PubMed]
    [Google Scholar]
  32. Jiang L, Pheng S, Lee KC, Kang SW, Jeong JC et al. Cohnella abietis sp. nov., isolated from Korean fir (Abies koreana) rhizospheric soil of Halla mountain. J Microbiol 2019; 57:953–958 [View Article]
    [Google Scholar]
  33. Minnikin D, O’Donnell A, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  34. Collins M, Shah H, Minnikin D. A note on the separation of natural mixtures of bacterial menaquinones using reverse phase thin‐layer chromatography. J Appl Microbiol 1980; 48:277–282
    [Google Scholar]
  35. Sasser M. Bacterial Identification by Gas Chromatographic Analysis of Fatty Acids Methyl Esters (Gc-Fame), MIDI Technical MIDI Technical Note #101. Newark, DE, USA: MIDI Inc; 2006
    [Google Scholar]
  36. Roh SW, Quan ZX, Nam YD, Chang HW, Kim KH et al. Pedobacter agri sp. nov., from soil. Int J Syst Evol Microbiol 2008; 58:1640–1643 [View Article]
    [Google Scholar]
  37. Yoon JH, Lee MH, Kang SJ, Park SY, Oh TK. Pedobacter sandarakinus sp. nov., isolated from soil. Int J Syst Evol Microbiol 2006; 56:1273–1277 [View Article]
    [Google Scholar]
  38. Han C, Spring S, Lapidus A, Del Rio TG, Tice H et al. Complete genome sequence of Pedobacter heparinus type strain (HIM 762-3. Stand Genomic Sci 2009; 1:54–62 [View Article] [PubMed]
    [Google Scholar]
  39. He RH, Liu ZW, Yu Y, Li HR, Du ZJ. Pedobacter changchengzhani sp. nov., isolated from soil of Antarctica. Antonie Van Leeuwenhoek 2019; 112:1747–1754 [View Article]
    [Google Scholar]
  40. Kwon SW, Son JA, Kim SJ, Kim Y-S, Park IC et al. Pedobacter rhizosphaerae sp. nov. and Pedobacter soli sp. nov., isolated from rhizosphere soil of Chinese cabbage (Brassica campestris. Int J Syst Evol Microbiol 2011; 61:2874–2879 [View Article] [PubMed]
    [Google Scholar]
  41. Yang JE, Shin JY, Park SY, Mavlonov GT, Yi EJ et al. Pedobacter kyungheensis sp. nov., with ginsenoside converting activity. J Gen Appl Microbiol 2012; 58:309–316 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.004915
Loading
/content/journal/ijsem/10.1099/ijsem.0.004915
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error