1887

Abstract

A Gram-stain-negative, aerobic and non-motile bacterium, strain sand1-3, was isolated from beach sand collected from Haeundae Beach located in Busan, Republic of Korea. Based on the results of 16S rRNA gene sequence and phylogenetic analyses, CH15-11 (97.0 %), DAC4 (96.8 %), AE3 (96.5 %) and YC6722 (96.0 %) were selected for comparing phenotypic and chemotaxonomic characteristics. Cells of strain sand1-3 grew at 7–50 °C (optimum, 30–35 °C), pH 5.0–8.0 (optimum, pH 7.0–8.0) and in the presence of 0–0.5 % (w/v) NaCl (optimum, 0 %). Major polar lipids included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid, one unidentified glycolipid and one unidentified phosphoglycolipid. The major fatty acids were summed feature 8 (C ω6 and/or C ω7) and C 2-OH. Moreover, the sole respiratory quinone and major polyamine were identified as ubiquinone-10 and homospermidine, respectively. The genomic DNA G+C content was 65.9 mol%. The digital DNA–DNA hybridization, average nucleotide identity and average amino acid identity values of strain sand1-3 and its reference strains with publicly available genomes were 17.9–18.9 %, 72.0–75.3 % and 63.3–76.5 % respectively. Based on polyphasic evidence, we propose sp. nov. as a novel species within the genus . The type strain is sand1-3 (=KCTC 82358=NBRC 114538).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004896
2021-07-29
2024-04-23
Loading full text...

Full text loading...

References

  1. Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I et al. Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjuction with Blastomonas ursincola. Int J Syst Evol Microbiol 2002; 52:1485–1496 [View Article] [PubMed]
    [Google Scholar]
  2. Feng G-D, Yang S-Z, Xiong X, Li H-P, Zhu H-H. Sphingomonas spermidinifaciens sp. nov., a novel bacterium containing spermidine as the major polyamine, isolated from an abandoned lead–zinc mine and emended descriptions of the genus Sphingomonas and the species Sphingomonas yantingensis and Sphingomonas japonica. Int J Syst Evol Microbiol 2017; 67:2160–2165
    [Google Scholar]
  3. Holmes B, Owen RJ, Evans A. Pseudomonas paucimobilis, a new species isolated from human clinical specimens, the hospital environment, and other sources. Int J Syst Bacteriol 1977; 27:133–146
    [Google Scholar]
  4. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990; 34:99–119 [View Article] [PubMed]
    [Google Scholar]
  5. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51:1405–1417 [View Article] [PubMed]
    [Google Scholar]
  6. Takeuchi M, Kawai F, Shimada Y, Yokota A. Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov., and Sphingomonas terrae sp. nov. Syst Appl Microbiol 1993; 16:227–238
    [Google Scholar]
  7. Kim H, Chhetri G, Seo T. Sphingomonas edaphi sp. nov., a novel species isolated from beach soil in the Republic of Korea. Int J Syst Evol Microbiol 2020; 70:522–529 [View Article] [PubMed]
    [Google Scholar]
  8. Kim H, Chhetri G, Seo T. Sphingomonas xanthus sp. nov., isolated from Beach Soil. Curr Microbiol 78:403–410 [View Article] [PubMed]
    [Google Scholar]
  9. Chung EJ, Jo EJ, Yoon HS, Song GC, Jeon CO et al. Sphingomonas oryziterrae sp. nov. and Sphingomonas jinjuensis sp. nov. isolated from rhizosphere soil of rice (Oryza sativa L. Int J Syst Evol Microbiol 2011; 61:2389–2394 [View Article]
    [Google Scholar]
  10. Huy H, Jin L, Lee KC, Kim SG, Lee JS et al. Sphingomonas daechungensis sp. nov., isolated from sediment of a eutrophic reservoir. Int J Syst Evol Microbiol 2014; 64:1412–1418 [View Article] [PubMed]
    [Google Scholar]
  11. Feng GD, Yang SZ, Xiong X, Li HP, Zhu HH. Sphingomonas metalli sp. nov., isolated from an abandoned lead–zinc mine. Int J Syst Evol Microbiol 2016; 66:2046–2051
    [Google Scholar]
  12. Feng GD, Yang SZ, Wang YH, Zhao GZ, Deng MR et al. Sphingomonas gimensis sp. nov., a novel Gram-negative bacterium isolated from abandoned lead-zinc ore mine. Antonie van Leeuwenhoek 2014; 105:1091–1097 [View Article] [PubMed]
    [Google Scholar]
  13. Kikukawa H, Okaya T, Maoka T, Miyazaki M, Murofushi K et al. Carotenoid nostoxanthin production by Sphingomonas sp. SG73 isolated from deep sea sediment. Mar Drugs 2021; 19:274 [View Article] [PubMed]
    [Google Scholar]
  14. Asker D, Beppu T, Ueda K. Sphingomonas jaspsi sp. nov., a novel carotenoid-producing bacterium isolated from Misasa, Tottori, Japan. Int J Syst Evol Microbiol 2007; 57:1435–1441 [View Article] [PubMed]
    [Google Scholar]
  15. Silva C, Cabral JMS, Van Keulen F. Isolation of a β-carotene over-producing soil bacterium, Sphingomonas sp. Biotechnol Lett 2004; 26:257–262 [View Article] [PubMed]
    [Google Scholar]
  16. Maoka T. Carotenoids as natural functional pigments. J Nat Med 2020; 74:1–16 [View Article] [PubMed]
    [Google Scholar]
  17. Choi JY, Kim JH, Lee PC. Flavobacterium kingsejongi sp. nov., a carotenoid-producing species isolated from antarctic penguin faeces. Int J Syst Evol Microbiol 2018; 68:911–916 [View Article] [PubMed]
    [Google Scholar]
  18. Misawa N, Shimada H. Metabolic engineering for the production of carotenoids in non- carotenogenic bacteria and yeasts. J Biotechnol 1998; 59:169–181
    [Google Scholar]
  19. Kim I, Chhetri G, Kim J, Kang M, Seo T. Lewinella aurantiaca sp. nov., a carotenoid pigment-producing bacterium isolated from surface seawater. Int J Syst Evol Microbiol 2020; 70:6180–6187 [View Article] [PubMed]
    [Google Scholar]
  20. Chhetri G, Kim J, Kim I, Kim H, Seo T. Hymenobacter Setariae sp. nov., isolated from the ubiquitous weedy grass Setaria viridis. Int J Syst Evol Microbiol 2020; 70:3724–3730 [View Article] [PubMed]
    [Google Scholar]
  21. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article] [PubMed]
    [Google Scholar]
  22. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617
    [Google Scholar]
  23. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettian PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article]
    [Google Scholar]
  24. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  26. Guidon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003; 52:696–704
    [Google Scholar]
  27. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  28. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  29. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  30. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article] [PubMed]
    [Google Scholar]
  31. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  32. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  33. Blin K, Shaw S, Steinke K, Villebro R, Ziemart N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucelic Acids Res 2019; 47:W81–W87
    [Google Scholar]
  34. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286
    [Google Scholar]
  35. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  36. Na S-I, Kim YO, Yoon SH, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285
    [Google Scholar]
  37. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genomics 2011; 12:402 [View Article] [PubMed]
    [Google Scholar]
  38. Kodani S, Unno K. How to harness biosynthetic gene clusters of lasso peptides. J Ind Microbiol Biotechnol 2020; 47:703–714 [View Article] [PubMed]
    [Google Scholar]
  39. Chan KG, Liu YC, Chang CY. Inhibiting N-acyl-homoserine lactone synthesis and quenching Pseudomonas quinolone quorum sensing to attenuate virulence. Front Microbiol 2015; 6:1173 [View Article] [PubMed]
    [Google Scholar]
  40. D’Souza-Ault MR, Smith LT, Smith GM. Roles of N-acetylglutaminylglutamine amide and glycine betaine in adaptation of Pseudomonas aeruginosa to osmotic stress. Appl Environ Microbiol 1993; 59:473–478 [View Article] [PubMed]
    [Google Scholar]
  41. Nishida Y, Adachi K, Kasai H, Shizuri Y, Shindo K et al. Elucidation of a carotenoid biosynthesis gene cluster encoding a novel enzyme, 2,2′-β-hydroxylase, from Brevundimonas sp. strain SD212 and combinatorial biosynthesis of new or rare xanthophylls. Appl Environ Microbiol 2005; 71:4286–4296 [View Article] [PubMed]
    [Google Scholar]
  42. Sedkova N, Tao L, Rouvière PE, Cheng Q. Diversity of carotenoid synthesis gene clusters from environmental Enterobacteriaceae strains. Appl Environ Microbiol 2005; 71:8141–8146 [View Article] [PubMed]
    [Google Scholar]
  43. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  44. Smibert RM, Kreig NR. Phenotypic Characterization. Gerhardt P, Murray R, Wood W, Kreig N. eds In Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  45. Buck JD. Nonstaining (KOH) method for determination of Gram reactions in marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [View Article] [PubMed]
    [Google Scholar]
  46. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes. Proposed minimal standards for describing new taxa of the family Flavobactericeae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070
    [Google Scholar]
  47. Chhetri G, Kim J, Kim I, Kang M, Lee B et al. Flavobacterium baculatum sp. nov., a carotenoid and flexirubin-type pigment producing species isolated from flooded paddy field. Int J Syst Evol Microbiol 2021; 71:004736
    [Google Scholar]
  48. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980; 8:87–91 [View Article]
    [Google Scholar]
  49. Kim J, Chhetri G, Kim I, Lee B, Jang W et al. Methylobacterium terricola sp. nov., a gamma radiation-resistant bacterium isolated from gamma ray-irradiated soil. Int J Syst Evol Microbiol 2020; 70:2449–2456 [View Article] [PubMed]
    [Google Scholar]
  50. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354 [View Article] [PubMed]
    [Google Scholar]
  51. Hamana K, Matsuzaki S. Polyamines as a chemotaxonomic marker in bacterial systematics. Crit Rev Microbiol 1992; 18:261–283 [View Article] [PubMed]
    [Google Scholar]
  52. Kuykendall LD, Roy MA, O’Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  53. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117
    [Google Scholar]
  54. Xu Z, Zhang Y, Muhammad Y, Wang G. Sphingomonas montanisoli sp. nov., isolated from mountain soil. Int J Syst Evol Microbiol 2020; 70:3606–3613 [View Article] [PubMed]
    [Google Scholar]
  55. Kämpfer P, Meurer U, Esser M, Hirsch T, Busse HJ. Sphingomonas pseudosanguinis sp. nov., isolated from the water reservoir of an air humidifier. Int J Syst Evol Microbiol 2007; 57:1342–1345 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004896
Loading
/content/journal/ijsem/10.1099/ijsem.0.004896
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error