1887

Abstract

An intracellular bacterium, strain IAS, was observed to infect several species of the plant-parasitic nematode genus (, , , , and ). The bacterium could not be recovered on axenic medium. The 16S rRNA gene sequence of IAS was found to be new, being related to the family Burkholderiaceae, class Betaproteobacteria. Fungal endosymbionts B1-EB (92.9 % sequence identity) and ‘ Glomeribacter gigasporarum’ BEG34 (89.8 % identity) are the closest taxa and form a separate phylogenetic clade inside Burkholderiaceae. Other genes (, and ) also separated this species from its closest relatives using a multilocus sequence analysis approach. These genes were obtained using a partial genome of this bacterium. The localization of the bacterium (via light and fluorescence hybridization microscopy) is in the females clustered around the developing oocytes, primarily found embedded inside the epithelial wall cells of the ovaries, from where they are dispersed in the intestine. Transmission electron microscopy (TEM) observations supported the presence of bacteria inside the nematode body, where they occupy ovaries and occur inside the intestinal epithelium. Ultrastructural analysis of the bacterium showed cells that appear as mostly irregular, slightly curved rods with rounded ends, 0.8–1.2 µm wide and 2.5–6.0 µm long, possessing a typical Gram-negative cell wall. The peptidoglycan layer is, however, evident only occasionally and not detectable by TEM in most cells. Another irregularly occurring shell surrounding the endosymbiont cells or the cell clusters was also revealed, probably originating from the host cell membrane. Flagella or spore-like cells do not occur and the nucleoid is diffusely distributed throughout the cell. This endosymbiont is transmitted vertically through nematode generations. These results support the proposal of IAS as a new species, although its obligate intracellular and obligate endosymbiont nature prevented isolation of a definitive type strain. Strain IAS is therefore proposed as representing ‘ Xiphinematincola pachtaicus’ gen. nov., sp. nov.

Funding
This study was supported by the:
  • Ministerio de Ciencia, Innovación y Universidades (Award RTI2018-095925-A-100)
    • Principle Award Recipient: JuanEmilio Palomares-Rius
  • Consejo Superior de Investigaciones Científicas (Award 201740E042)
    • Principle Award Recipient: P.Castillo
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004888
2021-07-21
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/7/ijsem004888.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004888&mimeType=html&fmt=ahah

References

  1. Palomares-Rius JE, Archidona-Yuste A, Cantalapiedra-Navarrete C, Prieto P, Castillo P. Molecular diversity of bacterial endosymbionts associated with dagger nematodes of the genus Xiphinema (Nematoda: Longidoridae) reveals a high degree of phylogenetic congruence with their host. Mol Ecol 2016; 25:6225–6247 [View Article] [PubMed]
    [Google Scholar]
  2. Brown AMV. Endosymbionts of plant-parasitic nematodes. Annu Rev Phytopathol 2018; 56:225–242 [View Article] [PubMed]
    [Google Scholar]
  3. Shepherd AM, Clark SA, Kempton A. Intracellular microorganism associated with tissues of Heterodera spp. Nematol 1973; 19:31–34 [View Article]
    [Google Scholar]
  4. Coomans A, Claeys M. Structure of the female reproductive system of Xiphinema americanum (Nematoda: Longidoridae. Fundam Appl Nematol 1998; 21:569–580
    [Google Scholar]
  5. Coomans A, Willems A. What are symbiotic bacteria doing in the ovaria of Xiphinema americanum-group species?. Nematol 1998; 44:323–326 [View Article]
    [Google Scholar]
  6. Vandekerckhove TT, Willems A, Gillis M, Coomans A. Occurrence of novel verrucomicrobial species, endosymbiotic and associated with parthenogenesis in Xiphinema americanum-group species (Nematoda, Longidoridae. Int J Syst Evol Microbiol 2000; 50 Pt 6:2197–2205 [View Article] [PubMed]
    [Google Scholar]
  7. Vandekerckhove TTM, Coomans A, Cornelis K, Baert P, Gillis M. Use of the Verrucomicrobia-specific probe EUB338-III and fluorescent in situ hybridization for detection of “Candidatus Xiphinematobacter” cells in nematode hosts. Appl Environ Microbiol 2002; 68:3121–3125 [View Article] [PubMed]
    [Google Scholar]
  8. Wasala SK, Brown AMV, Kang J, Howe DK, Peetz AB et al. Variable abundance and distribution of Wolbachia and Cardinium endosymbionts in plant-parasitic nematode field populations. Front Microbiol 2019; 10:964 [View Article] [PubMed]
    [Google Scholar]
  9. Orlando V, Chitambar JJ, Dong K, Chizhov VN, Mollov D et al. Molecular and morphological characterisation of Xiphinema americanum-group species (Nematoda: Dorylaimida) from California, USA, and other regions, and co-evolution of bacteria from the genus Candidatus Xiphinematobacter with nematodes. Nematol 2016; 18:1015–1043 [View Article]
    [Google Scholar]
  10. Mobasseri M, Hutchinson MC, Afshar FJ, Pedram M. New evidence of nematode-endosymbiont bacteria coevolution based on one new and one known dagger nematode species of Xiphinema americanum-group (Nematoda, Longidoridae. PloS One 2019; 14:e0217506 [View Article] [PubMed]
    [Google Scholar]
  11. Archidona-Yuste A, Navas-Cortés JA, Cantalapiedra-Navarrete C, Palomares-Rius JE, Castillo P. Remarkable diversity and prevalence of dagger nematodes of the genus Xiphinema Cobb, 1913 (Nematoda: Longidoridae) in olives revealed by integrative approaches. PloS One 2016; 11:e0165412 [View Article] [PubMed]
    [Google Scholar]
  12. Taylor CE, Brown DJF. Nematode vectors of plant viruses Wallingford, UK: CABI International;
    [Google Scholar]
  13. Flegg JJM. Extraction of Xiphinema and Longidorus species from soil by a modification of Cobb´s decanting and sieving technique. Ann Appl Biol 1967; 60:429–437
    [Google Scholar]
  14. Vicente CSL, Nascimento F, Espada M, Mota M, Oliveira S. Bacteria associated with the pinewood nematode Bursaphelenchus xylophilus collected in Portugal. Antonie van Leeuwenhoek 2011; 100:477–481 [View Article] [PubMed]
    [Google Scholar]
  15. Brown AMV, Howe DK, Wasala SK, Peetz AB, Zasada IA et al. Comparative genomics of a plant-parasitic nematode endosymbiont suggest a role in nutritional symbiosis. Genome Biol Evol 2015; 7:2727–2746 [View Article] [PubMed]
    [Google Scholar]
  16. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinforma Oxf Engl 2014; 30:2114–2120 [View Article]
    [Google Scholar]
  17. Chevreux J. MIRA: An Automated Genome and EST Assembler Heidelberg: German Cancer Research Center, Department of Molecular Biophysics; 2006
    [Google Scholar]
  18. Tayeb LA, Lefevre M, Passet V, Diancourt L, Brisse S et al. Comparative phylogenies of Burkholderia, Ralstonia, Comamonas, Brevundimonas and related organisms derived from rpoB, gyrB and rrs gene sequences. Res Microbiol 2008; 159:169–177 [View Article] [PubMed]
    [Google Scholar]
  19. Estrada-de los Santos P, Vinuesa P, Martínez-Aguilar L, Hirsch AM, Caballero-Mellado J. Phylogenetic analysis of Burkholderia species by multilocus sequence analysis. Curr Microbiol 2013; 67:51–60 [View Article] [PubMed]
    [Google Scholar]
  20. Sharmin D, Guo Y, Nishizawa T, Ohshima S, Sato Y et al. Comparative genomic insights into endofungal lifestyles of two bacterial endosymbionts, Mycoavidus cysteinexigens and Burkholderia rhizoxinica. Microbes Environ 2018; 33:66–76 [View Article] [PubMed]
    [Google Scholar]
  21. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 1989; 17:7843–7853 [View Article] [PubMed]
    [Google Scholar]
  22. Stackebrandt E, Liesack W. Nucleic acids and classification. In Handbook of New Bacterial Systematics London, UK: Academic Press; 1993 pp 152–189
    [Google Scholar]
  23. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2019; 20:1160–1166 [View Article] [PubMed]
    [Google Scholar]
  24. Hall TA. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 1999; 41:95–98
    [Google Scholar]
  25. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [View Article] [PubMed]
    [Google Scholar]
  26. Vaidya G, Lohman DJ, Meier R. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 2011; 27:171–180 [View Article]
    [Google Scholar]
  27. Swofford D. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10. Vol. Version 4.0, version 4.0b10 edn; 2002
  28. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinforma Oxf Engl 2003; 19:1572–1574 [View Article]
    [Google Scholar]
  29. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 2012; 9:772 [View Article] [PubMed]
    [Google Scholar]
  30. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article] [PubMed]
    [Google Scholar]
  31. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article] [PubMed]
    [Google Scholar]
  32. Sawana A, Adeolu M, Gupta RS. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 2014; 5:429 [View Article] [PubMed]
    [Google Scholar]
  33. Dobritsa AP, Samadpour M. Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia. Int J Syst Evol Microbiol 2016; 66:2836–2846 [View Article] [PubMed]
    [Google Scholar]
  34. Beukes CW, Palmer M, Manyaka P, Chan WY, Avontuur JR et al. Genome data provides high support for generic boundaries in Burkholderia sensu lato. Front Microbiol 2017; 8:1154 [View Article] [PubMed]
    [Google Scholar]
  35. Lopes-Santos L, Castro DBA, Ferreira-Tonin M, Corrêa DBA, Weir BS et al. Reassessment of the taxonomic position of Burkholderia andropogonis and description of Robbsia andropogonis gen. nov., comb. nov. Antonie van Leeuwenhoek 2017; 110:727–736 [View Article] [PubMed]
    [Google Scholar]
  36. Lin QH, Lv Y-Y, Gao ZH, Qiu LH. Pararobbsia silviterrae gen. nov., sp. nov., isolated from forest soil and reclassification of Burkholderia alpina as Pararobbsia alpina comb. nov. Int J Syst Evol Microbiol 2020; 70:1412–1420
    [Google Scholar]
  37. Madhaiyan M, See-Too W-S, Ee R, Saravanan VS, Wirth JS et al. Chitinasiproducens palmae gen. nov., sp. nov., a new member of the family Burkholderiaceae isolated from leaf tissues of oil palm (Elaeis guineensis Jacq. Int J Syst Evol Microbiol 2020; 70:2640–2647 [View Article] [PubMed]
    [Google Scholar]
  38. Estrada-de Los Santos P, Palmer M, Chávez-Ramírez B, Beukes C, Steenkamp ET et al. Whole genome analyses suggests that Burkholderia sensu lato contains two additional novel genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): Implications for the evolution of diazotrophy and nodulation in the Burkholderiaceae. Genes 2018; 9:389 [View Article]
    [Google Scholar]
  39. Estrada-de Los Santos P, Palmer M, Steenkamp ET, Maluk M, Beukes C et al. Trinickia dabaoshanensis sp. nov., a new name for a lost species. Arch Microbiol 2019; 201:1313–1316 [View Article] [PubMed]
    [Google Scholar]
  40. Otten C, Brilli M, Vollmer W, Viollier PH, Salje J. Peptidoglycan in obligate intracellular bacteria. Mol Microbiol 2018; 107:142–163 [View Article] [PubMed]
    [Google Scholar]
  41. Elshahed MS, Youssef NH, Spain AM, Sheik C, Najar FZ et al. Novelty and uniqueness patterns of rare members of the soil biosphere. Appl Environ Microbiol 2008; 74:5422–5428 [View Article] [PubMed]
    [Google Scholar]
  42. Ohshima S, Sato Y, Fujimura R, Takashima Y, Hamada M et al. Mycoavidus cysteinexigens gen. nov., sp. nov., an endohyphal bacterium isolated from a soil isolate of the fungus Mortierella elongata. Int J Syst Evol Microbiol 2016; 66:2052–2057 [View Article] [PubMed]
    [Google Scholar]
  43. Bianciotto V, Lumini E, Bonfante P, Vandamme P. Candidatus glomeribacter gigasporarum” gen. nov., sp. nov., an endosymbiont of arbuscular mycorrhizal fungi. Int J Syst Evol Microbiol 2003; 53:121–124 [View Article] [PubMed]
    [Google Scholar]
  44. Uehling J, Gryganskyi A, Hameed K, Tschaplinski T, Misztal PK et al. Comparative genomics of Mortierella elongata and its bacterial endosymbiont Mycoavidus cysteinexigens. Environ Microbiol 2017; 19:2964–2983 [View Article] [PubMed]
    [Google Scholar]
  45. Lumini E, Bianciotto V, Jargeat P, Novero M, Salvioli A et al. Presymbiotic growth and sporal morphology are affected in the arbuscular mycorrhizal fungus Gigaspora margarita cured of its endobacteria. Cell Microbiol 2007; 9:1716–1729 [View Article] [PubMed]
    [Google Scholar]
  46. Partida-Martinez LP, Groth I, Schmitt I, Richter W, Roth M et al. Burkholderia rhizoxinica sp. nov. and Burkholderia endofungorum sp. nov., bacterial endosymbionts of the plant-pathogenic fungus Rhizopus microsporus. Int J Syst Evol Microbiol 2007; 57:2583–2590 [View Article] [PubMed]
    [Google Scholar]
  47. Partida-Martinez LP, Hertweck C. A gene cluster encoding rhizoxin biosynthesis in “Burkholderia rhizoxina”, the bacterial endosymbiont of the fungus Rhizopus microsporus. Chembiochem Eur J Chem Biol 2007; 8:41–45
    [Google Scholar]
  48. Lackner G, Hertweck C. Impact of endofungal bacteria on infection biology, food safety, and drug development. PLoS Pathog 2011; 7:e1002096 [View Article] [PubMed]
    [Google Scholar]
  49. Pawlowska TE, Gaspar ML, Lastovetsky OA, Mondo SJ, Real-Ramirez I et al. Biology of fungi and their bacterial endosymbionts. Annu Rev Phytopathol 2018; 56:289–309 [View Article] [PubMed]
    [Google Scholar]
  50. Ghignone S, Salvioli A, Anca I, Lumini E, Ortu G et al. The genome of the obligate endobacterium of an AM fungus reveals an interphylum network of nutritional interactions. ISME J 2012; 6:136–145 [View Article] [PubMed]
    [Google Scholar]
  51. Bonfante P, Desirò A. Who lives in a fungus? The diversity, origins and functions of fungal endobacteria living in Mucoromycota. ISME J 2017; 11:1727–1735 [View Article] [PubMed]
    [Google Scholar]
  52. Mondo SJ, Toomer KH, Morton JB, Lekberg Y, Pawlowska TE. Evolutionary stability in a 400-million-year-old heritable facultative mutualism. Evol Int J Org Evol 2012; 66:2564–2576 [View Article]
    [Google Scholar]
  53. Toomer KH, Chen X, Naito M, Mondo SJ, den Bakker HC et al. Molecular evolution patterns reveal life history features of mycoplasma-related endobacteria associated with arbuscular mycorrhizal fungi. Mol Ecol 2015; 24:3485–3500 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004888
Loading
/content/journal/ijsem/10.1099/ijsem.0.004888
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error