1887

Abstract

The aerobic, Gram-positive, mesophilic strains, Uno17, SOSP1-1, 1-9, 1-30 and 150040, formed mycelia of irregularly branched filaments, produced spores or sporangia, and numerous secondary metabolite biosynthetic gene clusters. The five strains grew at 15–40 °C (optimally at 30 °C) and pH 4.0–8.0 (optimally at pH 6.0–7.0), and had 7.21–12.67 Mb genomes with 49.7–53.7 mol% G+C content. They shared MK9(H) as the major menaquinone and C-2OH and iso-C as the major cellular fatty acids. Phylogenetic and phylogenomic analyses showed that Uno17 and SOSP1-9 were most closely related to members of the genus , with 94.43–96.21 % 16S rRNA gene similarities and 72.16–81.56% genomic average nucleotide identity. The strain most closely related to SOSP1-1 and SOSP1-30 was SOSP1-21, with 91.33 and 98.84 % 16S rRNA similarities, and 75.13 and 92.35% average nucleotide identities, respectively. Strain 150040 formed a distinct clade within the order , showing <90.47 % 16S rRNA gene similarity to known species in this order. Based on these results, we propose: strain 150040 as gen. nov., sp. nov. (type strain 150 040=CGMCC 1.17052=BCRC 81202) within the family fam. nov. in the order ; strain SOSP1-1 as gen. nov., sp. nov. (type strain SOSP1-1=CGMCC 1.17205=BCRC 81203) and strain SOSP1-30 as sp. nov. (type strain SOSP1-30=CGMCC 1.17733=BCRC 81205) within the family ; strain Uno17 as sp. nov. (type strain Uno17=NBRC 113155=BCRC 81116); and strain SOSP1-9 as sp. nov. (type strain SOSP1-9=CGMCC 1.17206=BCRC 81204) within the family .

Funding
This study was supported by the:
  • MEXT/JSPS (Award 18KK0424)
    • Principle Award Recipient: ShuheiYabe
  • MEXT/JSPS (Award 18K05406)
    • Principle Award Recipient: ShuheiYabe
  • MEXT/JSPS (Award 16H06279)
    • Principle Award Recipient: ShuheiYabe
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004883
2021-07-23
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/7/ijsem004883.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004883&mimeType=html&fmt=ahah

References

  1. Cavaletti L, Monciardini P, Bamonte R, Schumann P, Ronde M et al. New lineage of filamentous, spore-forming, gram-positive bacteria from soil. Appl Environ Microbiol 2006; 72:4360–4369 [View Article]
    [Google Scholar]
  2. Yabe S, Aiba Y, Sakai Y, Hazaka M, Yokota A. Thermogemmatispora onikobensis gen. nov., sp. nov. and Thermogemmatispora foliorum sp. nov., isolated from fallen leaves on geothermal soils, and description of Thermogemmatisporaceae fam. nov. and Thermogemmatisporales ord. nov. within the class Ktedonobacteria. Int J Syst Evol Microbiol 2011; 61:903–910 [View Article] [PubMed]
    [Google Scholar]
  3. Yabe S, Sakai Y, Abe K, Yokota A, Také A et al. Dictyobacter aurantiacus gen. nov., sp. nov., a member of the family Ktedonobacteraceae, isolated from soil, and emended description of the genus Thermosporothrix. Int J Syst Evol Microbiol 2017; 67:2615–2621 [View Article] [PubMed]
    [Google Scholar]
  4. Wang C-M, Zheng Y, Sakai Y, Toyoda A, Minakuchi Y et al. Tengunoibacter tsumagoiensis gen. nov., sp. nov., Dictyobacter kobayashii sp. nov., Dictyobacter alpinus sp. nov., and description of Dictyobacteraceae fam. nov. within the order Ktedonobacterales isolated from Tengu-no-mugimeshi, a soil-like granular mass of micro-organisms, and emended descriptions of the genera Ktedonobacter and Dictyobacter. Int J Syst Evol Microbiol 2019; 69:1910–1918 [View Article] [PubMed]
    [Google Scholar]
  5. Zheng Y, Wang C, Sakai Y, Abe K, Yokota A et al. Dictyobacter vulcani sp. nov., belonging to the class Ktedonobacteria, isolated from soil of the Mt Zao volcano. Int J Syst Evol Microbio 2020; 70:1805
    [Google Scholar]
  6. Yan B, Guo X, Liu M, Huang Y. Ktedonosporobacter rubrisoli gen. nov., sp. nov., a novel representative of the class Ktedonobacteria, isolated from red soil, and proposal of Ktedonosporobacteraceae fam. nov. Int J Syst Evol Microbiol 2020; 70:1015–1025 [View Article] [PubMed]
    [Google Scholar]
  7. Yabe S, Aiba Y, Sakai Y, Hazaka M, Yokota A. Thermosporothrix hazakensis gen. nov., sp. nov., isolated from compost, description of Thermosporotrichaceae fam. nov. within the class Ktedonobacteria Cavaletti et al. 2007 and emended description of the class Ktedonobacteria. Int J Syst Evol Microbiol 2010; 60:1794–1801 [View Article] [PubMed]
    [Google Scholar]
  8. Yabe S, Sakai Y, Yokota A. Thermosporothrix narukonensis sp. nov., belonging to the class Ktedonobacteria, isolated from fallen leaves on geothermal soil, and emended description of the genus Thermosporothrix. Int J Syst Evol Microbiol 2016; 66:2152–2157 [View Article] [PubMed]
    [Google Scholar]
  9. King CE, King GM. Description of Thermogemmatispora carboxidivorans sp. nov., a carbon-monoxide-oxidizing member of the class Ktedonobacteria isolated from a geothermally heated biofilm, and analysis of carbon monoxide oxidation by members of the class Ktedonobacteria. Int J Syst Evol Microbiol 2014; 64:1244–1251 [View Article] [PubMed]
    [Google Scholar]
  10. Zheng Y, Wang C-M, Sakai Y, Abe K, Yokota A et al. Thermogemmatispora aurantia sp. nov. and Thermogemmatispora argillosa sp. nov., within the class Ktedonobacteria, and emended description of the genus Thermogemmatispora. Int J Syst Evol Microbiol 2019; 69:1744–1750 [View Article] [PubMed]
    [Google Scholar]
  11. Vyssotski M, Ryan J, Lagutin K, Wong H, Morgan X et al. A novel fatty acid, 12,17-dimethyloctadecanoic acid, from the extremophile Thermogemmatispora sp. (Strain T81. Lipids 2012; 47:601–611 [View Article]
    [Google Scholar]
  12. Zheng Y, Saitou A, Wang CM, Toyoda A, Minakuchi Y et al. Genome features and secondary metabolites biosynthetic potential of the class Ktedonobacteria. Front Microbiol 2019; 10:1–21
    [Google Scholar]
  13. Park J-S, Kagaya N, Hashimoto J, Izumikawa M, Yabe S et al. Identification and biosynthesis of new acyloins from the thermophilic bacterium Thermosporothrix hazakensis SK20-1(T. ChemBioChem 2014; 15:527–532 [View Article] [PubMed]
    [Google Scholar]
  14. Igarashi Y, Yamamoto K, Ueno C, Yamada N, Saito K et al. Ktedonoketone and 2’- oxosattabacin, benzenoid metabolites from a thermophilic bacterium Thermosporothrix hazakensis in the phylum Chloroflexi. J Antibiot (Tokyo) 20193–10
    [Google Scholar]
  15. Weber CF, King GM. Distribution and diversity of carbon monoxide-oxidizing bacteria and bulk bacterial communities across a succession gradient on a hawaiian volcanic deposit. Environ Microbiol 2010; 12:1855–1867 [View Article] [PubMed]
    [Google Scholar]
  16. Hernández M, Vera-Gargallo B, Calabi-Floody M, King GM, Conrad R et al. Reconstructing genomes of carbon monoxide oxidisers in volcanic deposits including members of the class Ktedonobacteria. bioRxiv 2020 [View Article]
    [Google Scholar]
  17. Ji M, Greening C, Vanwonterghem I, Carere CR, Bay SK et al. Atmospheric trace gases support primary production in antarctic desert surface soil. Nature 2017; 552:400–403 [View Article] [PubMed]
    [Google Scholar]
  18. Tebo BM, Davis RE, Anitori RP, Connell LB, Schiffman P et al. Microbial communities in dark oligotrophic volcanic ice cave ecosystems of Mt. Erebus, Antarctica. Front Microbiol 2015; 6:1–14
    [Google Scholar]
  19. Costello EK, Halloy SRP, Reed SC, Sowell P, Schmidt SK. Fumarole-supported islands of biodiversity within a hyperarid, high-elevation landscape on Socompa volcano, Puna de Atacama, Andes. Appl Environ Microbiol 2009; 75:735–747 [View Article] [PubMed]
    [Google Scholar]
  20. Yabe S Y, Sakai Y, Abe K, Yokota A. Diversity of Ktedonobacteria with actinomycetes-like morphology in terrestrial environments. Microbes Environ 2017; 32:61–70
    [Google Scholar]
  21. Busti E, Cavaletti L, Monciardini P, Schumann P, Rohde M et al. Catenulispora acidiphila gen. nov., sp. nov., a novel, mycelium-forming actinomycete, and proposal of Catenulisporaceae fam. nov. Int J Syst Evol Microbiol 2006; 56:1741–1746 [View Article] [PubMed]
    [Google Scholar]
  22. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  23. Stott MB, Crowe MA, Mountain BW, Smirnova AV, Hou S et al. Isolation of novel bacteria, including a candidate division, from geothermal soils in New Zealand. Environ Microbiol 2008; 10:2030–2041 [View Article] [PubMed]
    [Google Scholar]
  24. Yabe S, Aiba Y, Sakai Y, Hazaka M, Yokota A. A life cycle of branched aerial mycelium- and multiple budding spore-forming bacterium Thermosporothrix hazakensis belonging to the phylum Chloroflexi. J Gen Appl Microbiol 2010; 56:137–141 [View Article] [PubMed]
    [Google Scholar]
  25. Yabe S, Wang C-M, Zheng Y, Sakai Y, Abe K et al. Formation of sporangiospores in Dictyobacter aurantiacus (class Ktedonobacteria in phylum Chloroflexi. J Gen Appl Microbiol 2020; 65:316–319 [View Article] [PubMed]
    [Google Scholar]
  26. Lane D. 16S/23S rRNA sequencing. Stackebrandt E, Goodfellow M. eds In Nucleic Acid Techniques in Bacterial Systematics New York, NY: John Wiley and Sons; 1991 pp 115–175
    [Google Scholar]
  27. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. Spades: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  28. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article] [PubMed]
    [Google Scholar]
  29. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. Checkm: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  30. Tanizawa Y, Fujisawa T, Nakamura Y. DFAST: A flexible prokaryotic genome annotation pipeline for faster Genome publication. Bioinformatics 2018; 34:1037–1039 [View Article] [PubMed]
    [Google Scholar]
  31. Blin K, Kim HU, Medema MH, Weber T. Recent development of antismash and other computational approaches to mine secondary metabolite biosynthetic gene clusters. Brief Bioinform 20171–11
    [Google Scholar]
  32. Edgar RC. Muscle: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  33. Kumar S, Stecher G, Tamura K. Mega7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  34. Felsenstein J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  35. Islam ZF, Cordero PRF, Feng J, Chen Y-J, Bay SK et al. Two chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. ISME J 2019; 13:1801–1813 [View Article] [PubMed]
    [Google Scholar]
  36. Pruesse E, Peplies J, Glöckner FO. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article] [PubMed]
    [Google Scholar]
  37. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  38. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  39. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  40. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14
    [Google Scholar]
  41. Chaudhari NM, Gupta VK, Dutta C. BPGA-an ultra-fast pan-genome analysis pipeline. Sci Rep 2016; 6:1–10
    [Google Scholar]
  42. Stackebrandt E, Goebel BM. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 1994; 44:846–849
    [Google Scholar]
  43. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  44. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  45. Smibert RM, Krieg NR. Phenotypic characterization. In Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  46. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  47. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article] [PubMed]
    [Google Scholar]
  48. Harper JJ, Davis GHG, Harper JJ, Davis GHG. NOTES Two-dimensional thin-layer chromatography for amino amid nalaysis of bacterial cell walls. Int J Syst Bacteriol 1979; 29:56–58
    [Google Scholar]
  49. Také A, Nakashima T, Inahashi Y, Shiomi K, Takahashi Y et al. Analyses of the cell-wall peptidoglycan structures in three genera Micromonospora, Catenuloplanes, and Couchioplanes belonging to the family Micromonosporaceae by derivatization with FDLA and PMP using LC/MS. J Gen Appl Microbiol 2016; 62:199–205 [View Article] [PubMed]
    [Google Scholar]
  50. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  51. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.004883
Loading
/content/journal/ijsem/10.1099/ijsem.0.004883
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error