gen. nov., sp. nov., a novel bacterium in the family , isolated from desert soil, and reclassification of to a new genus as comb. nov., and transfer of the genera and from the family to the family No Access

Abstract

A novel pale orange-coloured bacterium, designated strain SYSU D00532, was isolated from sandy soil collected from the Gurbantunggut desert in Xinjiang, PR China. Cells of strain SYSU D00532 were found to be aerobic, Gram-stain-negative, oxidase-positive, catalase-positive, motile and rod-shaped with a single polar or subpolar flagellum. Growth occurred at 15–45 °C (optimum, 28–37 °C, pH 5.0–8.0 (optimum, pH 6.0–7.0) and with 0–1.5% NaCl (w/v; optimum, 0.5 %). The major polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and phosphatidylglycerol. Unidentified aminolipids, unidentified polar lipids, an unidentified aminophospholipid and an unidentified phospholipid were also detected. The major respiratory quinone was ubiquinone-10 and the major fatty acids were summed feature 8 (C 7 and/or C 6), C and C cyclo 8. The genomic DNA G+C content was 69.8 mol%. Results of phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SYSU D00532 belonged to the family and showed 93.4% ( 2622), 93.2% ( 10-1-101), 93.2% (‘’ YIM 93097) and 92.4% ( M71) similarities. Based on the phylogenetic, phenotypic and chemotaxonomic data, strain SYSU D00532 is proposed to represent a new species of a new genus, named gen. nov., sp. nov., within the family . The type strain is SYSU D00532 (=KCTC 82269=CGMCC 1.18631=MCCC 1K04984). We also propose the reclassification of to a new genus as comb. nov., and the transfer of the genera and from the family to the family based on the phylogenetic results.

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 32061143043)
    • Principle Award Recipient: Wen-JunLi
  • National Natural Science Foundation of China (Award 32000005)
    • Principle Award Recipient: LeiDong
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004874
2021-07-20
2024-03-29
Loading full text...

Full text loading...

References

  1. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM et al. Analysis of 1000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 2020; 11:468 [View Article] [PubMed]
    [Google Scholar]
  2. Tarrand JJ, Krieg NR, Döbereiner J. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 1978; 24:967–980 [View Article] [PubMed]
    [Google Scholar]
  3. Falk E, Döbereiner J, Johnson J, Krieg N. Deoxyribonucleic acid homology of Azospirillum amazonense Magalhães et al. 1984 and emendation of the description of the genus Azospirillum . Int J Syst Evol Microbiol 1985; 35:117–118
    [Google Scholar]
  4. Liu M, Dai J, Liu Y, Cai F, Wang Y et al. Desertibacter roseus gen. nov., sp. nov., a gamma radiation-resistant bacterium in the family Rhodospirillaceae, isolated from desert sand. Int J Syst Evol Microbiol 2011; 61:1109–1113 [View Article] [PubMed]
    [Google Scholar]
  5. Rahalkar M, Bahulikar RA, Deutzmann JS, Kroth PG, Schink B. Elstera litoralis gen. nov., sp. nov., isolated from stone biofilms of Lake Constance, Germany. Int J Syst Evol Microbiol 2012; 62:1750–1754 [View Article] [PubMed]
    [Google Scholar]
  6. Coenye T, Goris J, Spilker T, Vandamme P, LiPuma JJ. Characterization of unusual bacteria isolated from respiratory secretions of cystic fibrosis patients and description of Inquilinus limosus gen. nov., sp. nov. J Clin Microbiol 2002; 40:2062–2069 [View Article] [PubMed]
    [Google Scholar]
  7. Sheu SY, Chen WM, Young CC, Chen WM. Lacibacterium aquatile gen. nov., sp. nov., a new member of the family Rhodospirillaceae isolated from a freshwater lake. Int J Syst Evol Microbiol 2013; 63:4797–4804 [View Article] [PubMed]
    [Google Scholar]
  8. Lin SY, Hameed A, Shen FT, Liu YC, Hsu YH et al. Description of Niveispirillum fermenti gen. nov., sp. nov., isolated from a fermentor in Taiwan, transfer of Azospirillum irakense (1989) as Niveispirillum irakense comb. nov., and reclassification of Azospirillum amazonense (1983) as Nitrospirillum amazonense gen. nov. Antonie van Leeuwenhoek 2014; 105:1149–1162 [View Article] [PubMed]
    [Google Scholar]
  9. Kawasaki H, Hoshino Y, Kuraishi H, Yamasato K. Rhodocista centenaria gen. nov., sp. nov., a cyst-forming anoxygenic photosynthetic bacterium and its phylogenetic position in the Proteobacteria alpha group. J Gen Appl Microbiol 1992; 38:541–551 [View Article]
    [Google Scholar]
  10. Sly LI, Stackebrandt E. Description of Skermanella parooensis gen. nov., sp. nov. to accommodate Conglomeromonas largomobilis subsp. parooensis following the transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum . Int J Syst Evol Microbiol 1999; 49:541–544 [View Article]
    [Google Scholar]
  11. Jiang F, Xue X, Qiu X, Zhang K, Chang X et al. Desertibacter xinjiangensis sp. nov., isolated from the soil of a Euphrates poplar forest, and emended description of the genus Desertibacter . Int J Syst Evol Microbiol 2014; 64:3690–3694 [View Article] [PubMed]
    [Google Scholar]
  12. An H, Zhang L, Tang Y, Luo X, Sun T et al. Skermanella xinjiangensis sp. nov., isolated from the desert of Xinjiang, China. Int J Syst Evol Microbiol 2009; 59:1531–1534 [View Article] [PubMed]
    [Google Scholar]
  13. Weon HY, Kim BY, Hong SB, Joa JH, Nam SS et al. Skermanella aerolata sp. nov., isolated from air, and emended description of the genus Skermanella . Int J Syst Evol Microbiol 2007; 57:1539–1542 [View Article] [PubMed]
    [Google Scholar]
  14. Subhash Y, Yoon DE, Lee SS. Skermanella mucosa sp. nov., isolated from crude oil contaminated soil. Antonie van Leeuwenhoek 2017; 110:1053–1060 [View Article] [PubMed]
    [Google Scholar]
  15. Steenhoudt O, Vanderleyden J. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 2000; 24:487–506 [View Article] [PubMed]
    [Google Scholar]
  16. Luo G, Shi Z, Wang H, Wang G. Skermanella stibiiresistens sp. nov., a highly antimony-resistant bacterium isolated from coal-mining soil, and emended description of the genus Skermanella . Int J Syst Evol Microbiol 2012; 62:1271–1276 [View Article] [PubMed]
    [Google Scholar]
  17. Subhash Y, Lee SS. Skermanella rosea sp. nov., isolated from hydrocarbon-contaminated desert sands. Int J Syst Evol Microbiol 2016; 66:3951–3956 [View Article] [PubMed]
    [Google Scholar]
  18. Guo Q, Zhou Z, Zhang L, Zhang C, Chen M et al. Skermanella pratensis sp. nov., isolated from meadow soil, and emended description of the genus Skermanella . Int J Syst Evol Microbiol 2020; 70:1605–1609 [View Article] [PubMed]
    [Google Scholar]
  19. Zhang ZY, Gao XH, Zhang YJ, Jia M, X-J L et al. Skermanella rubra sp. nov., a bacterium isolated from the desert of Xinjiang, China. Antonie van Leeuwenhoek 2015; 108:627–632
    [Google Scholar]
  20. Chen RW, Wang KX, Zhou XF, Long C, Tian XP et al. Indioceanicola profundi gen. nov., sp. nov., isolated from Indian Ocean sediment. Int J Syst Evol Microbiol 2018; 68:3707–3712 [View Article] [PubMed]
    [Google Scholar]
  21. Ruan Z, Sun Q, Zhang Y, Jiang JD. Oleisolibacter albus gen. nov., sp. nov., isolated from an oil-contaminated soil. Int J Syst Evol Microbiol 2019; 69:2220–2225 [View Article] [PubMed]
    [Google Scholar]
  22. Hozzein WN, Ali MIA, Rabie W. A new preferential medium for enumeration and isolation of desert actinomycetes. World J Microbiol Biotechnol 2007; 24:1547–1552 [View Article]
    [Google Scholar]
  23. Leifson E. Atlas of Bacterial Flagellation New York: Academic Press; 1960 [View Article]
    [Google Scholar]
  24. Narsing Rao MP, Dong ZY, Kan Y, Zhang K, Fang BZ et al. Description of Paenibacillus antri sp. nov. and Paenibacillus mesophilus sp. nov., isolated from cave soil. Int J Syst Evol Microbiol 2020; 70:1048–1054 [View Article] [PubMed]
    [Google Scholar]
  25. Xu P, Li W-J, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153
    [Google Scholar]
  26. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article] [PubMed]
    [Google Scholar]
  27. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  28. Collins M, Pirouz T, Goodfellow M, Minnikin D. Distribution of menaquinones in actinomycetes and corynebacteria. Microbiology 1977; 100:221–230
    [Google Scholar]
  29. Minnikin D, O’donnell A, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  30. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  31. Tamaoka J, Katayama‐Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36 [View Article]
    [Google Scholar]
  32. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  33. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4‐diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
  34. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:16
    [Google Scholar]
  35. Li W-J, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57:1424–1428
    [Google Scholar]
  36. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008; 74:2461–2470 [View Article] [PubMed]
    [Google Scholar]
  37. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing Ezbiocloud: A taxonomically united database of 16s rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613
    [Google Scholar]
  38. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  39. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  40. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  41. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  42. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  43. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article] [PubMed]
    [Google Scholar]
  44. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  45. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  46. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  47. Harrison PG, Strulo B. SPADES-a process algebra for discrete event simulation. J Log Comput 2000; 10:3–42
    [Google Scholar]
  48. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  49. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW et al. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:1 [View Article]
    [Google Scholar]
  50. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res 2004; 32:D277–80 [View Article]
    [Google Scholar]
  51. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000; 28:33–36 [View Article] [PubMed]
    [Google Scholar]
  52. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 2016; 44:D279–D285
    [Google Scholar]
  53. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 2017; 45:D566–D573 [View Article] [PubMed]
    [Google Scholar]
  54. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  55. Wu M, Scott AJ. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 2012; 28:1033–1034 [View Article] [PubMed]
    [Google Scholar]
  56. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [View Article] [PubMed]
    [Google Scholar]
  57. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004874
Loading
/content/journal/ijsem/10.1099/ijsem.0.004874
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed