1887

Abstract

An aerobic, Gram-stain-negative, non-sporulating, flagellated and spindle-like bacterium, designated HY14, was isolated from a pickle-processing factory wastewater sample. The isolate chemoheterotrophically grew at 4–42 °C (optimum, 35 °C) and pH 5.5–9.0 (optimum, pH 6.0–6.5). Salt was required for growth (0.5–12 % NaCl, w/v). A deep brown and water-soluble uncharacterized pigment was produced when grown in certain media. The predominant fatty acids (>5 %) included C, C 7, 11-methyl C 7 and C cyclo 8. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, two unidentified aminolipids, two unidentified phospholipids, two unidentified glycolipids and five unknown lipids. The major isoprenoid quinone was ubiquinone-10. Pairwise alignment based on 16S rRNA gene sequences indicated that strain HY14 had the highest sequence similarity to genera (95.61–96.05 %) and (95.82 %). Phylogenetic analysis based on core genome illustrated that strain HY14 formed a monophyletic lineage with members of the genus in the clade of the group in the family . The core-gene average amino acid identity used to define bacterial genera by a threshold of 60–80 % was calculated to be 68.56–76.5 % between HY14 and closely related taxa. Several genomic characteristics, such as carrying two RuBisCO-mediated pathways and different osmoprotectant transport pathways, exhibited the genotypic discrepancies of strain HY14. Based on the polyphasic taxonomic characterization, strain HY14 is considered to represent a novel species of a novel genus belonging to the family , for which the name gen. nov., sp. nov. is proposed. The type strain is HY14 (=CGMCC 1.15973=KCTC 52499). (Zhong . 2015) is considered to diverge from at the genus level, and should be reassigned as a novel genus, for which the name gen. nov., comb. nov. is proposed.

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 31700566)
    • Principle Award Recipient: Xin-QiZhang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004859
2021-06-28
2024-04-20
Loading full text...

Full text loading...

References

  1. Garrity GM, Bell JA, Lilburn T. Rhodobacteraceae fam. nov. Brenner D, Krieg N, Stanley J, Garrity G. eds In Bergey’s Manual of Systematic Bacteriology, Volume 2, Part C, 2nd. edn New York: Springer; 2005 p 161
    [Google Scholar]
  2. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM et al. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 2020; 11:468 [View Article] [PubMed]
    [Google Scholar]
  3. Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC. The family Rhodobacteraceae. Rosenberg E, Delong E, Lory S, Stackebrandt E, Thompson F. eds In The Prokaryotes - Alphaproteobacteria and Betaproteobacteria, 4th edn. New York: Springer; 2014 p 439
    [Google Scholar]
  4. Buchan A, González JM, Moran MA. Overview of the marine Roseobacter lineage. Appl Environ Microbiol 2005; 71:5665–5677 [View Article] [PubMed]
    [Google Scholar]
  5. Luo HW, Moran MA. Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol R 2014; 78:573–587
    [Google Scholar]
  6. Giovannoni SJ, Pappé MS. Evolution, diversity and molecular ecology of marine prokaryotes. Kirchman D. eds In Microbial Ecology of the Oceans New York: Wiley; 2000 p 47
    [Google Scholar]
  7. Rathgeber C, Yurkova N, Stackebrandt E, Schumann P, Beatty JT et al. Roseicyclus mahoneyensis gen. nov., sp. nov., an aerobic phototrophic bacterium isolated from a meromictic lake. Int J Syst Evol Microbiol 2005; 55:1597–1603 [View Article] [PubMed]
    [Google Scholar]
  8. Zhong Z-P, Liu Y, Wang F, Zhou Y-G, Liu H-C et al. Lacimonas salitolerans gen. nov., sp. nov., isolated from surface water of a saline lake. Int J Syst Evol Microbiol 2015; 65:4550–4556 [View Article] [PubMed]
    [Google Scholar]
  9. Zhong Z-P, Liu Y, Zhou Y-G, Liu H-C, Wang F. Maritimibacter lacisalsi sp. nov., isolated from a salt lake, and emended description of the genus Maritimibacter Lee et al. 2007. Int J Syst Evol Microbiol 2015; 65:3462–3468 [View Article] [PubMed]
    [Google Scholar]
  10. Shen X, Zhao Z, Wu C, Yu X-Y, Li Y et al. Roseovarius nitratireducens sp. nov., a halotolerant bacterium isolated from a saline lake. Int J Syst Evol Microbiol 2018; 68:1204–1209 [View Article]
    [Google Scholar]
  11. Martínez-Cánovas MJ, Quesada E, Martínez-Checa F, Moral AD, Béjar V et al. Salipiger mucescens gen. nov., sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium isolated from hypersaline soil, belonging to the α-Proteobacteria. Int J Syst Evol Microbiol 2004; 54:1735–1740 [View Article]
    [Google Scholar]
  12. Castro DJ, Cerezo I, Sampedro I, Martínez-Checa F. Roseovarius ramblicola sp. nov., a moderately halophilic bacterium isolated from saline soil in Spain. Int J Syst Evol Microbiol 2018; 68:1851–1856 [View Article] [PubMed]
    [Google Scholar]
  13. Wang Y-X, Wang Z-G, Liu J-H, Chen Y-G, Zhang X-X et al. Sediminimonas qiaohouensis gen. nov., sp. nov., a member of the Roseobacter clade in the order Rhodobacterales. Int J Syst Evol Microbiol 2009; 59:1561–1567 [View Article] [PubMed]
    [Google Scholar]
  14. Xiao W, Wang Y-X, Liu J-H, Wang Z-G, Zhang X-X et al. Roseivivax sediminis sp. nov., a moderately halophilic bacterium isolated from salt mine sediment. Int J Syst Evol Microbiol 2012; 62:1890–1895 [View Article]
    [Google Scholar]
  15. Sun C, Pan J, Zhang XQ, Su Y, Wu M. Pseudoroseovarius zhejiangensis gen. nov., sp. nov., a novel alpha-proteobacterium isolated from the chemical wastewater, and reclassification of Roseovarius crassostreae as Pseudoroseovarius crassostreae comb. nov., Roseovarius sediminilitoris as Pseudoroseovarius sediminilitoris comb. nov. and Roseovarius halocynthiae as Pseudoroseovarius halocynthiae comb. nov. Antonie van Leeuwenhoek 2015; 108:291–299 [View Article] [PubMed]
    [Google Scholar]
  16. Dobritsa AP, Samadpour M. The status of the genus Pseudoroseovarius Sun et al. 2015. Int J Syst Evol Microbiol 2016; 66:4960–4962 [View Article] [PubMed]
    [Google Scholar]
  17. Han S-B, Su Y, Hu J, Wang R-J, Sun C et al. Terasakiella brassicae sp. nov., isolated from the wastewater of a pickle-processing factory, and emended descriptions of Terasakiella pusilla and the genus Terasakiella. Int J Syst Evol Microbiol 2016; 66:1807–1812 [View Article] [PubMed]
    [Google Scholar]
  18. Cho JC, Giovannoni SJ. Parvularcula bermudensis gen. nov., sp. nov., a marine bacterium that forms a deep branch in the α-Proteobacteria. Int J Syst Evol Microbiol 2003; 53:1031–1036 [View Article] [PubMed]
    [Google Scholar]
  19. Zhu XF. Physiological and biochemical characteristics of microbes. In Experimental Techniques of Modern Microbiology (English translation) Hangzhou: Zhejiang University Press; 2011 pp 198–241
    [Google Scholar]
  20. Zhang X-Q, Ying Y, Ye Y, Xu X-W, Zhu X-F et al. Thermus arciformis sp. nov., a thermophilic species from a geothermal area. Int J Syst Evol Microbiol 2010; 60:834–839
    [Google Scholar]
  21. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963; 85:1183–1184 [View Article] [PubMed]
    [Google Scholar]
  22. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19:161–207
    [Google Scholar]
  23. Kates M. Analysis and identification of lipids. In Techniques of Lipidology - Isolation, Analysis and Identification of Lipids Vol 3 Amsterdam: Elsevier; 1986 p 352
    [Google Scholar]
  24. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  25. Lee K, Choo Y-J, Giovannoni SJ, Cho J-C. Maritimibacter alkaliphilus gen. nov., sp. nov., a genome-sequenced marine bacterium of the Roseobacter clade in the order Rhodobacterales. Int J Syst Evol Microbiol 2007; 57:1653–1658 [View Article] [PubMed]
    [Google Scholar]
  26. Zhang XQ, Zhang ZL, Wu N, Zhu XF, Wu M. Anoxybacillus vitaminiphilus sp. nov., a strictly aerobic and moderately thermophililic bacterium isolatd from a hot spring. Int J Syst Evol Microbiol 2013; 63:4064–4071 [View Article] [PubMed]
    [Google Scholar]
  27. Yoon SH, SM H, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617
    [Google Scholar]
  28. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary genetics Analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article]
    [Google Scholar]
  29. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  30. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  31. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  32. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  33. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM et al. ABySS: a parallel assembler for short read sequence data. Genome Res 2009; 19:1117–1123 [View Article] [PubMed]
    [Google Scholar]
  34. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  35. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST. Nucleic Acids Res 2014; 42:D206–214 [View Article] [PubMed]
    [Google Scholar]
  36. Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF et al. Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics 2011; 12:124 [View Article] [PubMed]
    [Google Scholar]
  37. Xu L, Ye KX, Dai WH, Sun C, Xu LH et al. Comparative genomic insights into secondary metabolism biosynthetic gene cluster distributions of marine Streptomyces. Marine Drugs 2019; 17:498
    [Google Scholar]
  38. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  39. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article] [PubMed]
    [Google Scholar]
  40. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  41. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44:457–462 [View Article]
    [Google Scholar]
  42. Yoon SH, Ha SM, Lim JM, Kwon SJ, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  43. Xu L, Sun C, Huang MM, Wu YH, Yuan CQ et al. Complete genome sequence of Euzebya sp. DY32-46, a marine Actinobacteria isolated from the Pacific Ocean. Marine Genomics 2019; 44:65–69
    [Google Scholar]
  44. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence interevals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  45. Kim M, HS O, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351
    [Google Scholar]
  46. Luo CW, Rodriguez-R LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Research 2014; 42:e73
    [Google Scholar]
  47. Wirth JS, Whitman WB. Phylogenomic analyses of a clade within the roseobacter group suggest taxonomic reassignments of species of the genera Aestuariivita, Citreicella, Loktanella, Nautella, Pelagibaca, Ruegeria, Thalassobius, Thiobacimonas and Tropicibacter, and the proposal of six novel genera. Int J Syst Evol Microbiol 2018; 68:2393–2411 [View Article] [PubMed]
    [Google Scholar]
  48. Macnab RM. How bacteria assemble flagella. Annu Rev Microbiol 2003; 57:77–100 [View Article] [PubMed]
    [Google Scholar]
  49. Lenk S, Moraru C, Hahnke S, Arnds J, Richter M et al. Roseobacter clade bacteria are abundant in coastal sediments and encode a novel combination of sulfur oxidation genes. ISME J 2012; 6:2178–2187 [View Article] [PubMed]
    [Google Scholar]
  50. Tang K, Yang YJ, Lin D, Li SH, Zhou WC et al. Genomic, physiologic and proteomic insights into metabolic versatility in Roseobacter clade bacteria isolated from deep-sea water. Sci Rep 2016; 6:35528
    [Google Scholar]
  51. Kim J, Kim DY, Yang KH, Kim S, Lee SS. Ruegeria lutea sp. nov., isolated from marine sediment, Masan Bay, South Korea. Int J Syst Evol Microbiol 2019; 69:2854–2861 [View Article] [PubMed]
    [Google Scholar]
  52. Mlewski EC, Pisapia C, Gomez F, Lecourt L, Rueda ES et al. Characterization of pustular mats and related rivularia-rich laminations in oncoids from the Laguna Negra Lake (Argentina. Front Microbiol 2018; 9:996 [View Article]
    [Google Scholar]
  53. Simon M, Scheuner C, Meier-Kolthoff JP, Brinkhoff T, Wagner-Döbler I et al. Phylogenomics of rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J 2017; 11:1483–1499 [View Article]
    [Google Scholar]
  54. Yoon JH, Lee SY, Jung YT, Lee JS, Lee KC. Litorisediminicola beolgyonensis gen. nov., sp. nov., isolated from a coastal sediment. Int J Syst Evol Microbiol 2013; 63:2025–2031 [View Article] [PubMed]
    [Google Scholar]
  55. Li JY, Huang ZB, Lai QL, Liu XP, Wang GY et al. Oceaniglobus indicus gen. nov., sp. nov., a member of the family Rhodobacteraceae isolated from surface seawater. Int J Syst Evol Microbiol 2017; 67:4930–4935
    [Google Scholar]
  56. Wang N-N, Zhou L-Y, Wang X-P, Li Y-X, Du Z-J. Oceaniglobus ichthyenteri sp. nov., isolated from the gut microflora of sea bass (Dicentrarchus labrax L.) and emended description of the genus Oceaniglobus. Int J Syst Evol Microbiol 2019; 69:2892–2898
    [Google Scholar]
  57. Jung HS, Jeong SE, Chun BH, Quan Z-X, Jeon CO. Rhodophyticola porphyridii gen. nov., sp. nov., isolated from a red alga, Porphyridium marinum. Int J Syst Evol Microbiol 2019; 69:1656–1661 [View Article] [PubMed]
    [Google Scholar]
  58. Park S, Park JM, Lee KC, Bae KS, Yoon JH. Boseongicola aestuarii gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64:2618–2624 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004859
Loading
/content/journal/ijsem/10.1099/ijsem.0.004859
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error