1887

Abstract

A novel Gram-stain-negative, aerobic, asporogenous, catalase-positive and oxidase-negative, non-motile, golden-yellow pigmented, rod-shaped bacterium with casein-degrading ability, designated strain GCR10, was isolated from roots of rice plants collected from a paddy field near Dongguk University, Republic of Korea. The results of subsequent 16S rRNA gene sequence analysis indicated that GCR10 shares the highest sequence identity with VQ-6316s (98.3%). Strain GCR10 grew at 2–32 °C (optimum, 25 °C), at pH 6.0–8.0 (optimum, pH 7.0) and in the presence of 0–2.0% (w/v) NaCl (optimum in the absence of NaCl). The novel strain was able to produce carotenoid and flexirubin-type pigments. The predominant menaquinone was MK-6 and the major fatty acids were identified as iso-C, iso-C 3-OH and iso-Cω9. The polar lipids were phosphatidylethanolamine, four unidentified aminoglycolipids, two unidentified aminolipids and two unidentified glycolipids. The genome of GCR10 is 4.3 Mb in length with a DNA G+C content of 36.5 mol%. Average nucleotide identity, digital DNA–DNA hybridization and average amino acid identity values between GCR10 and VQ-6316s were 82.1, 25.2 and 84.3 %, respectively, which clearly indicates that the novel strain is distinct from its closest relative. The demand for natural biodegradable pigments isolated frominsects, plants or microorganisms is increasing day by day because of their beneficial pharmacological properties. Here, we describe a novel strain that produces two types of pigment, carotenoid and flexirubin. On the basis of the results from phenotypic, genotypic and chemotaxonomic analyses, strain GCR10 represents a novel species of the genus , and the name sp. nov. is proposed. The type strain is GCR10 (=KACC 21707=NBRC 114715).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004854
2021-07-07
2024-04-24
Loading full text...

Full text loading...

References

  1. Vandamme P, Bernardet JF, Segers P, Kersters K, Holmes B. New perspectives in the classification of the Flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 1994; 44:827–831 [View Article]
    [Google Scholar]
  2. Bernardet JF, Segers P, Vancanneyt M, Berthe F, Kersters K et al. Cutting a gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978. Int J Syst Bacteriol 1996; 46:128–148 [View Article]
    [Google Scholar]
  3. García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T et al. Analysis of 1,000 Type-Strain Genomes Improves Taxonomic Classification of Bacteroidetes. Front Microbiol 2019; 10:2083 [View Article]
    [Google Scholar]
  4. Nguyen N-L, Kim Y-J, Hoang VA, Yang DC. Chryseobacterium ginsengisoli sp. nov., isolated from the rhizosphere of ginseng and emended description of Chryseobacterium gleum. Int J Syst Evol Microbiol 2013; 63:2975–2980 [PubMed]
    [Google Scholar]
  5. Montero-Calasanz M del C, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium oleae sp. nov., an efficient plant growth promoting bacterium in the rooting induction of olive tree (Olea europaea L.) cuttings and emended descriptions of the genus Chryseobacterium, C. daecheongense, C. gambrini, C. gleum, C. joostei, C. jejuense, C. luteum, C. shigense, C. taiwanense, C. ureilyticum and C. vrystaatense. Syst Appl Microbiol 2014; 37:342–350 [View Article]
    [Google Scholar]
  6. Hahnke RL, Meier-Kolthoff JP, García-López M, Mukherjee S, Huntemann M et al. Genome-based taxonomic classification of Bacteroidetes. Front Microbiol 2016; 7:2003 [View Article]
    [Google Scholar]
  7. Nicholson AC, Gulvik CA, Whitney AM, Humrighouse BW, Bell ME et al. Division of the genus Chryseobacterium: observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas, eleven species to the genus Kaistella, and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens. Int J Syst Evol Microbiol 2020; 70:4432–4450 [View Article] [PubMed]
    [Google Scholar]
  8. Benmalek Y, Cayol JL, Bouanane NA, Hacene H, Fauque G et al. Chryseobacterium solincola sp. nov., isolated from soil. Int J Syst Evol Microbiol 2010; 60:1876–1880 [View Article] [PubMed]
    [Google Scholar]
  9. Chen F-L, Wang G-C, Teng S-O, Ou T-Y, Yu F-L et al. Clinical and epidemiological features of Chryseobacterium indologenes infections: analysis of 215 cases. J Microbiol Immunol 2013; 46:425–432
    [Google Scholar]
  10. Kämpfer P, Fallschissel K, Avendaño-Herrera R. Chryseobacterium chaponense sp. nov., isolated from farmed Atlantic salmon (Salmo salar. Int J Syst Evol Microbiol 2011; 61:497–501 [View Article]
    [Google Scholar]
  11. Reynaud I, Chanteperdrix V, Broux C, Pavese P, Croizé J et al. [A severe form of Chryseobacterium indologenes pneumonia in an immunocompetent patient]. Med Mal Infect 2007; 37:762–764 [View Article] [PubMed]
    [Google Scholar]
  12. Smith J, Han R, Mailman T, MacDonald N. Chryseobacterium indologenes: distinguishing pathogen from contaminant in a neonate. J Ped Infect Dis 2012; 7:31–35
    [Google Scholar]
  13. Montero-Calasanz MC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. Int J Syst Evol Microbiol 2013; 63:4386–4395 [View Article] [PubMed]
    [Google Scholar]
  14. Dahal RH, Chaudhary DK, Kim D, Pandey RP, Kim J. Chryseobacterium antibioticum sp. nov. with antimicrobial activity against Gram-negative bacteria, isolated from Arctic soil. J Antibiot 2021; 74:115–123 [View Article]
    [Google Scholar]
  15. Kim KK, Bae HS, Schumann P, Lee ST. Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 2005; 55:133–138 [View Article]
    [Google Scholar]
  16. Du J, Ngo HT, Won K, Kim KY, Jin FX et al. Chryseobacterium solani sp. nov., isolated from field-grown egg plant rhizosphere soil. Int J Syst Evol Microbiol 2015; 65:2372–2377 [View Article] [PubMed]
    [Google Scholar]
  17. Hantsis-Zacharov E, Halpern M. Chryseobacterium haifense sp. nov., a psychrotolerant bacterium isolated from raw milk. Int J Syst Evol Microbiol 2007; 57:2344–2348 [View Article] [PubMed]
    [Google Scholar]
  18. Kämpfer P, Poppel MT, Wilharm G, Busse HJ, Mcinroy JA et al. Chryseobacterium gallinarum sp. nov., isolated from a chicken, and Chryseobacterium contaminans sp. nov., isolated as a contaminant from a rhizosphere sample. Int J Syst Evol Microbiol 2014; 64:1419–1427 [View Article] [PubMed]
    [Google Scholar]
  19. Ilardi P, Fernández J, Avendaño-Herrera R. Chryseobacterium piscicola sp. nov., isolated from diseased salmonid fish. Int J Syst Evol Microbiol 2009; 59:3001–3005 [View Article] [PubMed]
    [Google Scholar]
  20. Kämpfer P, Arun AB, Young CC, Chen WM, Sridhar KR et al. Chryseobacterium arthrosphaerae sp. nov., isolated from the faeces of the pill millipede Arthrosphaera magna Attems. Int J Syst Evol Microbiol 2010; 60:1765–1769 [View Article] [PubMed]
    [Google Scholar]
  21. Chaudhary DK, Kim J. Chryseobacterium nepalense sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2017; 67:646–652 [View Article] [PubMed]
    [Google Scholar]
  22. Schoner TA. Initiation of the flexirubin biosynthesis in Chitinophaga pinensis. Microb Biotechnol 2014; 7:232–241 [View Article] [PubMed]
    [Google Scholar]
  23. Akbari GA, Arab SM, Alikhani HA, Allahdadi I, Arzanesh MH. Isolation and selection of indigenous Azospirillum spp. And the IAA of superior strains effects on wheat roots. W J Agri Sci 2007; 3:523–529
    [Google Scholar]
  24. Chhetri G, Kim J, Kim I, Lee B, Jang W et al. Adhaeribacter rhizoryzae sp. nov., a fibrillar matrix producing bacterium isolated from the rhizosphere of rice plant. Int J Syst Evol Microbiol 2020; 70:5382–5388 [View Article] [PubMed]
    [Google Scholar]
  25. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbial 2012; 62:716–721
    [Google Scholar]
  26. Thompson J, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  27. Kumar S, Stecher G, Tamura K. Mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  28. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425
    [Google Scholar]
  29. Felsenstein J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  30. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  31. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. Spades: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  32. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  33. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: Rapid Annotations using Subsystems Technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  34. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 2016; 44:D286 [View Article]
    [Google Scholar]
  35. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286
    [Google Scholar]
  36. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  37. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001; 29:2607–2618 [View Article] [PubMed]
    [Google Scholar]
  38. Na S-I, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285
    [Google Scholar]
  39. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  40. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 2017; 34:2115–2122 [View Article] [PubMed]
    [Google Scholar]
  41. Hlaváček O, Váchová L. ATP-dependent proteinases in bacteria. Folia Microbiol 2002; 47:203–212 [View Article]
    [Google Scholar]
  42. Hardoim PR, van Overbeek LS, Elsas JD. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 2008; 16:463–471 [View Article] [PubMed]
    [Google Scholar]
  43. Kim J, Chhetri G, Kim I, Kim H, Kim MK et al. methylobacterium terrae sp. nov., a radiation-resistant bacterium isolated from gamma ray-irradiated soil. J Microbiol 2020; 959:966
    [Google Scholar]
  44. Buck JD. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [View Article] [PubMed]
    [Google Scholar]
  45. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article]
    [Google Scholar]
  46. Chhetri G, Kim J, Kim H, Kim I, Seo T. Pontibacter oryzae sp. nov., a carotenoid-producing species isolated from a rice paddy field. Antonie Van Leeuwenhoek 2019; 112:1705–1713 [View Article] [PubMed]
    [Google Scholar]
  47. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980; 8:87–91 [View Article]
    [Google Scholar]
  48. Smibert RM, Krieg NR. Phenotypic characterization. Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds In Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  49. Chhetri G, Kim J, Kim I, Seo T. Runella soli sp. nov., isolated from garden soil. Antonie van Leeuwenhoek 2019; 112:1245–1252 [View Article] [PubMed]
    [Google Scholar]
  50. Kuykendall LD, Roy MA, O’Neill JJ, Devine TE. Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Evol Microbiol 1988; 38:358–361
    [Google Scholar]
  51. Kim I, Chhetri G, Kim J, Kang M, Seo T. Lewinella aurantiaca sp. nov., carotenoid pigment-producing bacterium isolated from surface seawater. Int J Syst Evol Microbiol 2020; 70:6180–6187 [View Article] [PubMed]
    [Google Scholar]
  52. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 1981; 45:316–354 [PubMed]
    [Google Scholar]
  53. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241
    [Google Scholar]
  54. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:205
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004854
Loading
/content/journal/ijsem/10.1099/ijsem.0.004854
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error