1887

Abstract

A novel actinomycete, designated strain KK5PA1, was isolated from a soil sample collected from Kuan Kreng peat swamp forest, Nakhon Si Thammarat Province, Thailand. The morphological, chemotaxonomic and phylogenetic characteristics were consistent with its classification in the genus . Strain KK5PA1 was most closely related to NEAU-HZ10 (98.0 %) and 701 (97.6 %). The G+C content of the genomic DNA was 72.3 mol%. Digital DNA–DNA hybridization and average nucleotide identity values between the genome sequence of strain KK5PA1 and those of DSM 42138(25.1 and 79.1 %) and DSM 41944(25.1 and 79.7%) were below the thresholds of 70 and 96 % for prokaryotic conspecific assignation. Chemotaxonomic data revealed that strain KK5PA1 possessed MK-9(H) and MK-9(H) as the predominant menaquinones. It contained diaminopimelic acid as the diagnostic diamino acid and galactose, glucose, mannose and ribose as whole-cell sugars. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol mannoside, two unidentified aminolipids, five unidentified phospholipids and an unidentified lipid. The predominant cellular fatty acids were iso-C, anteiso-C and C. On the basis of these genotypic and phenotypic data, it is proposed that strain KK5PA1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is strain KK5PA1 (=TBRC 13094=NBRC 114802).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004849
2021-07-02
2021-07-29
Loading full text...

Full text loading...

References

  1. Waksman SA, Henrici AT. The nomenclature and classification of the actinomycetes. J Bacteriol 1943; 46:337–341 [View Article] [PubMed]
    [Google Scholar]
  2. Kämpfer P. Genus I. Streptomyces Waksman and Henrici 1943, 339AL emend. WITT and Stackebrandt 1990, 370 EMEND. Wellington, Stackebrandt, Sanders, Wolstrup and Jorgensen 1992, 159. Goodfellow M, Kämpfer P, Busse H-J, Trujillo M, Suzuki K. eds In Bergey’s Manual of Systematics Bacteriology Vol 5 New York: Springer; 2012 pp 1455–1767
    [Google Scholar]
  3. Bull AT, Stach JE. Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 2007; 15:491–499 [View Article] [PubMed]
    [Google Scholar]
  4. Leete R. Malaysia’s Peat Swamp Forest Conservation and Sustainable Use Malaysia: United nations development programme; 2006
    [Google Scholar]
  5. Hayakawa M, Nonomura H. Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 1987; 65:501–509
    [Google Scholar]
  6. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. Practical Streptomyces Genetics Norwich, UK: John Innes Foundation; 2000
    [Google Scholar]
  7. Mingma R, Pathom-aree W, Trakulnaleamsai S, Thamchaipenet A, Duangmal K. Isolation of rhizospheric and roots endophytic actinomycetes from Leguminosae plant and their activities to inhibit soybean pathogen, Xanthomonas campestris pv. glycine. World J Microbiol Biotechnol 2014; 30:271–280 [View Article] [PubMed]
    [Google Scholar]
  8. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617
    [Google Scholar]
  9. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  10. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  11. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  12. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  13. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  14. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  15. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  16. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  17. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  18. Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:W276–W282 [View Article] [PubMed]
    [Google Scholar]
  19. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  20. Shirling ET, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  21. Mundie D. The NBS/ISCC Color System/David A Mundie Pittsburgh, PA: Polymath Systems; 1995
    [Google Scholar]
  22. Gordon RE, Barnett DA, Handerhan JE, Pang C-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  23. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983; 129:1743–1813 [View Article] [PubMed]
    [Google Scholar]
  24. Gerhardt P, Murray R, Krieg N, Wood W. eds Methods for General and Molecular Bacteriology American Society for Microbiology; 1994
    [Google Scholar]
  25. Gordon RE, Mihm JM. A comparative study of some strains received as nocardiae. J Bacteriol 1957; 73:15–27 [View Article] [PubMed]
    [Google Scholar]
  26. Becker B, Lechevalier M, Lechevalier H. Chemical composition of cell-wall preparations from strains of various form-genera of aerobic actinomycetes. Appl Microbiol 1965; 13:236–243 [View Article] [PubMed]
    [Google Scholar]
  27. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  28. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
  29. Tomiyasu I. Mycolic acid composition and thermally adaptative changes in Nocardia asteroides. J Bacteriol 1982; 151:828–837 [View Article] [PubMed]
    [Google Scholar]
  30. Minnikin D, Patel P, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117
    [Google Scholar]
  31. Collins M, Pirouz T, Goodfellow M, Minnikin D. Distribution of menaquinones in actinomycetes and corynebacteria. Microbiology 1977; 100:221–230
    [Google Scholar]
  32. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, Delaware, United States: MIDI, Inc; 2001 pp 1–7
    [Google Scholar]
  33. Lechevalier MP, De Bievre C, Lechevalier H. Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 1977; 5:249–260 [View Article]
    [Google Scholar]
  34. Xu C, Wang L, Cui Q, Huang Y, Liu Z et al. Neutrotolerant acidophilic Streptomyces species isolated from acidic soils in China: Streptomyces guanduensis sp. nov., Streptomyces paucisporeus sp. nov., Streptomyces rubidus sp. nov. and Streptomyces yanglinensis sp. nov. Int J Syst Evol Microbiol 2006; 56:1109–1115 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004849
Loading
/content/journal/ijsem/10.1099/ijsem.0.004849
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error