1887

Abstract

Strain MaA-C15, a Gram-stain-negative, non-spore-forming and strictly aerobic bacterium, was isolated from a xenic culture of in the Republic of Korea. Cells were motile rods showing positive reactions in catalase and oxidase tests. Growth was observed between 15 and 37 °C (optimum, 30 °C), between pH 6.0 and pH 11.0 (optimum, pH 7.5) and in the presence of 0–2.0 % (w/v) NaCl (optimum, 0 %). Strain MaA-C15 contained C, 11-methyl-C 7, cyclo-C 8 and summed feature 8 (C 6 and/or C 7) as the major cellular fatty acids and ubiquinone-10 as the sole respiratory quinone. Phosphatidylethanolamine, phosphatidylmonomethylethanolamine, an unidentified aminophospholipid, an unidentified glycolipid and three unidentified phospholipids were detected as the major polar lipids. The G+C content of the genomic DNA was 64.1 mol%. Phylogenetic and phylogenomic analyses based on 16S rRNA gene and genome sequences revealed that strain MaA-C15 formed a phyletic lineage with YIM M12096 within the family . Strain MaA-C15 was most closely related to DSM 21822 with a 98.2 % 16S rRNA sequence similarity. Average nucleotide identity and DNA–DNA hybridization values between strain MaA-C15 and DSM 21822 were 75.4 and 20.1 %, respectively. Based on the results of phenotypic, chemotaxonomic and molecular analyses, strain MaA-C15 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MaA-C15 (=KACC 21226=JCM 33503).

Funding
This study was supported by the:
  • National Institute of Biological Resources (Award NIBR202029201)
    • Principle Award Recipient: CheOk Jeon
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004847
2021-07-02
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/7/ijsem004847.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004847&mimeType=html&fmt=ahah

References

  1. Jarvis B, Van Berkum P, Chen W, Nour S, Fernandez M. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Evol Microbiol 1997; 47:895–898 [View Article]
    [Google Scholar]
  2. Wang FQ, Wang ET, Liu J, Chen Q, Sui XH. Mesorhizobium albiziae sp. nov., a novel bacterium that nodulates Albizia kalkora in a subtropical region of China. Int J Syst Evol Microbiol 2007; 57:1192–1199 [View Article] [PubMed]
    [Google Scholar]
  3. Zhou S, Li Q, Jiang H, Lindström K, Zhang X. Mesorhizobium sangaii sp. nov., isolated from the root nodules of Astragalus luteolus and Astragalus ernestii. Int J Syst Evol Microbiol 2013; 63:2794–2799 [View Article] [PubMed]
    [Google Scholar]
  4. Nguyen TM, Pham VHT, Kim J. Mesorhizobium soli sp. nov., a novel species isolated from the rhizosphere of Robinia pseudoacacia L. in South Korea by using a modified culture method. Antonie van Leeuwenhoek 2015; 108:301–310 [View Article] [PubMed]
    [Google Scholar]
  5. Kabdullayeva T, Crosbie DB, Marín M. Mesorhizobium norvegicum sp. nov., a rhizobium isolated from a Lotus corniculatus root nodule in Norway. Int J Syst Evol Microbiol 2020; 70:388–396 [View Article] [PubMed]
    [Google Scholar]
  6. Ferraz Helene LC, Dall’Agnol RF, Delamuta JRM, Hungria M. Mesorhizobium atlanticum sp. nov., a new nitrogen-fixing species from soils of the Brazilian Atlantic Forest biome. Int J Syst Evol Microbiol 2019; 69:1800–1806 [View Article] [PubMed]
    [Google Scholar]
  7. De Meyer SE, Andrews M, James EK, Willems A. Mesorhizobium carmichaelinearum sp. nov., isolated from Carmichaelineae spp. root nodules. Int J Syst Evol Microbiol 2019; 69:146–152 [View Article] [PubMed]
    [Google Scholar]
  8. Sannazzaro AI, Torres Tejerizo G, Fontana MF, Cumpa Velásquez LM, Hansen LH. Mesorhizobium sanjuanii sp. nov., isolated from nodules of Lotus tenuis in the saline-alkaline lowlands of Flooding Pampa, Argentina. Int J Syst Evol Microbiol 2018; 68:2936–2942 [View Article] [PubMed]
    [Google Scholar]
  9. Liu L, Liang LX, Zhang XX, LB L, Sun QW. Mesorhizobium ephedrae sp. nov. isolated from the roots of Ephedra przewalskii in Kumtag desert. Int J Syst Evol Microbiol 2018; 68:3615–3620
    [Google Scholar]
  10. Lorite MJ, Flores-Félix JD, Á P, Sanjuán J, Velázquez E. Mesorhizobium olivaresii sp. nov. isolated from Lotus corniculatus nodules. Syst Appl Microbiol 2016; 39:557–561
    [Google Scholar]
  11. Zhang J, Guo C, Chen W, de Lajudie P, Zhang Z. Mesorhizobium wenxiniae sp. nov., isolated from chickpea (Cicer arietinum L.) in China. Int J Syst Evol Microbiol 2018; 68:1930–1936 [View Article] [PubMed]
    [Google Scholar]
  12. Fu G-Y, Yu X-Y, Zhang C-Y, Zhao Z, Wu D et al. Mesorhizobium oceanicum sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2017; 67:2739–2745 [View Article]
    [Google Scholar]
  13. Yuan C-G, Jiang Z, Xiao M, Zhou E-M, Kim C-J et al. Mesorhizobium sediminum sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2016; 66:4797–4802 [View Article] [PubMed]
    [Google Scholar]
  14. Stanier R, Kunisawa R, Mandel M, Cohen-Bazire G. Purification and properties of unicellular blue-green algae (order Chroococcales. Bacteriol Rev 1971; 35:171 [View Article] [PubMed]
    [Google Scholar]
  15. Seo YR, Jeong SE, Jin HM, Jeon CO. Flavobacterium microcysteis sp. nov., isolated from a culture of Microcystis aeruginosa. Int J Syst Evol Microbiol 2020; 70:1037–1041 [View Article] [PubMed]
    [Google Scholar]
  16. Park YJ, Kim KH, Han DM, Lee DH, Jeon CO. Sphingobium terrigena sp. nov., isolated from gasoline-contaminated soil. Int J Syst Evol Microbiol 2019; 69:2459–2464 [View Article] [PubMed]
    [Google Scholar]
  17. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing Ezbiocloud: A taxonomically united database of 16s rrna gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  18. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 2014; 42:D633–642 [View Article] [PubMed]
    [Google Scholar]
  19. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  20. Sambrook J, Russell D. Molecular Cloning: a Laboratory Manual, 3rd ed. Oxford: Coldspring-Harbour Laboratory Press; 2001
    [Google Scholar]
  21. Luo R, Liu B, Xie Y, Li Z, Huang W. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article] [PubMed]
    [Google Scholar]
  22. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comp Biol 2017; 13:e1005595
    [Google Scholar]
  23. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  24. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article]
    [Google Scholar]
  25. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  26. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [PubMed]
    [Google Scholar]
  27. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämpfer P. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 2002; 52:1043–1047 [View Article] [PubMed]
    [Google Scholar]
  28. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  29. Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD. Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J Bacteriol 2002; 184:3086–3095 [View Article] [PubMed]
    [Google Scholar]
  30. Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T. Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 2000; 7:331–338 [View Article] [PubMed]
    [Google Scholar]
  31. Gomori G. Preparation of buffers for use in enzyme studies. Methods Enzymol 1955; 1:138–146
    [Google Scholar]
  32. Smibert RM, Krieg NR. Phenotypic characterization. Gerhardt P. eds In Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  33. Lányi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1988; 19:1–67
    [Google Scholar]
  34. Minnikin D, O’donnell A, Goodfellow M, Alderson G, Athalye M. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  35. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI technical note 101. Newark: MIDI Inc; 1990
    [Google Scholar]
  36. Minnikin D, Patel P, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Evol Microbiol 1977; 27:104–117
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.004847
Loading
/content/journal/ijsem/10.1099/ijsem.0.004847
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error