1887

Abstract

A rod-shaped and Gram-stain-negative bacterial strain 9A, was isolated from an air sample collected at King George Island, maritime Antarctica. Phylogenetic analysis based on 16S rRNA gene sequence reveals that strain 9A belongs to the genus and shows the highest similarity to CCM 8649 (96.8 %). The DNA G+C content based on the draft genome sequence is 64.9 mol%. Strain 9A is strictly aerobic, psychrophilic, catalase-positive, oxidase-positive and non-motile. Growth is observed at 0–20 °C (optimum 10 °C), pH 6.0–8.0 (optimum pH 7.0), and in the absence of NaCl. The predominant menaquinone of strain 9A is MK-7 and the major fatty acids comprise Summed Feature 3 (C c and/or C c; 25.2 %), iso-C (23.2 %), C c (11.6 %), Summed Feature 4 (anteiso-C B/iso-C I) (9.6 %) and anteiso-C (9.6 %). The polar lipid profile consists of the major lipid phosphatidylethanolamine and moderate to minor amounts of phosphatidylserine, unidentified aminolipids, aminophospholipids, aminophosphoglycolipids, polar lipids lacking a functional group and an unidentified phospholipid and a glycolipid. In the polyamine pattern -homospermidine is predominant. On the basis of the results obtained, strain 9A is proposed as a novel species of the genus , for which the name sp. nov. is suggested. The type strain is 9A (=CCM 8971=LMG 32109=DSM 111653).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004838
2021-06-21
2021-07-31
Loading full text...

Full text loading...

References

  1. Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B et al. Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antarctic soils and sandstone: Bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol 1998; 21:374–383 [View Article] [PubMed]
    [Google Scholar]
  2. Buczolits S, Denner EBM, Kämpfer P, Busse HJ. Proposal of Hymenobacter norwichensis sp. nov., classification of ‘Taxeobacter ocellatus’, ‘Taxeobacter gelupurpurascens’ and ‘Taxeobacter chitinovorans’ as Hymenobacter ocellatus sp. nov., Hymenobacter gelipurpurascens sp. nov. and Hymenobacter chitinivorans sp. nov., respectively, and emended description of the genus Hymenobacter Hirsch et al. 1999. Int J Syst Evol Microbiol 2006; 56:2071–2078 [View Article] [PubMed]
    [Google Scholar]
  3. Reddy GS. Phylogenetic analyses of the genus Hymenobacter and description of Siccationidurans gen. nov., and Parahymenobacter gen. nov J Phylogen Evol Biol 2013; 1:1–9
    [Google Scholar]
  4. Han L, Wu S-J, Qin C-Y, Zhu Y-H, Lu Z-Q et al. Hymenobacter qilianensis sp. Nov., isolated from a subsurface sandstone sediment in the permafrost region of Qilian Mountains, China and emended description of the genus Hymenobacter. Antonie Van Leeuwenhoek 2014; 105:971–978
    [Google Scholar]
  5. Buczolits S, Busse HJ. Hymenobacter. Whitman W. eds In Bergey’s Manual of Systematics of archaea and bacteria John Wiley & Sons, Inc., in association with Bergey’s Manual Trust; 2015 pp 1–11
    [Google Scholar]
  6. Munoz R, Rosselló-Móra R, Amann R. Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov. Syst Appl Microbiol 2016; 39:281–296 [View Article] [PubMed]
    [Google Scholar]
  7. Sedláček I, Králová S, Kýrová K, Mašlaňová I, Busse HJ et al. Red-pink pigmented Hymenobacter coccineus sp. nov., Hymenobacter lapidarius sp. nov. and Hymenobacter glacialis sp. nov., isolated from rocks in Antarctica. Int J Syst Evol Microbiol 2017; 67:1775–1983
    [Google Scholar]
  8. Sedláček I, Pantůček R, Holochová P, Králová S, Staňková E et al. Hymenobacter humicola sp. Nov., isolated from soils in Antarctica. Int J Syst Evol Microbiol 2019; 69:2755–2761 [View Article] [PubMed]
    [Google Scholar]
  9. Klassen JL, Foght JM. Characterization of Hymenobacter isolates from Victoria Upper Glacier, Antarctica reveals five new species and substantial non-vertical evolution within this genus. Extremophiles 2011; 15:45–57 [View Article] [PubMed]
    [Google Scholar]
  10. Kojima H, Watanabe M, Tokizawa R, Shinohara A, Fukui M. Hymenobacter nivis sp. nov., isolated from red snow in Antarctica. Int J Syst Evol Microbiol 2016; 66:4821–4825 [View Article] [PubMed]
    [Google Scholar]
  11. Roldán DM, Kyrpides N, Woyke T, Shapiro N, Whitman WB et al. Hymenobacter artigasi sp. Nov., isolated from air sampling in maritime Antarctica. Int J Syst Evol Microbiol 2020; 1–7:
    [Google Scholar]
  12. Machin EV, Asem MD, Salam N, Iriarte A, Langleib M et al. Nesterenkonia natronophila sp. nov., an alkaliphilic actinobacterium isolated from a soda lake, and emended description of the genus Nesterenkonia. Int J Syst Evol Microbiol 2019; 69:1960–1966 [View Article] [PubMed]
    [Google Scholar]
  13. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing Ezbiocloud: A taxonomically united database of 16s rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  16. Fitch WM. Toward defining the course of evlution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  17. Kumar S, Stecher G, Tamura K. mega7: Molecular evolutionary genetics analysis version 7. 0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  18. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  19. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  20. Bennett S. Solexa Ltd. Pharmacogenomics 2004; 5:433–438 [View Article] [PubMed]
    [Google Scholar]
  21. Bushnell B. B tools software package; 2021 https://sourceforge.net/projects/bbmap
  22. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. Spades: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  23. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  24. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA Ribosomal RNA Gene Database Project: Improved data processing and web-based tools. Nucleic Acids Res 2013; 41:D590–D596
    [Google Scholar]
  25. Huntemann M, Ivanova NN, Mavromatis K, James Tripp H, Paez-Espino D et al. The standard operating procedure of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4. Stand Genomic Sci 2015; 10:4–9 [View Article]
    [Google Scholar]
  26. Chen I-MA, Chu K, Palaniappan K, Pillay M, Ratner A et al. IMG/M v.5.0: An integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res 2019; 47:D666–D677 [View Article] [PubMed]
    [Google Scholar]
  27. Rodriguez-R L, Konstantinidis K. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Prepr 2016; 4:e1900v1 [View Article]
    [Google Scholar]
  28. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  29. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe 2014; 9:111–118
    [Google Scholar]
  30. Aziz RK, Bartels D, Best A, DeJongh M, Disz T et al. The RAST server: Rapid annotations using Subsystems technology. BMC Genomics 2008; 9:1–15
    [Google Scholar]
  31. Price MN, Dehal PS, Arkin AP. FastTree 2 - Approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:1–10
    [Google Scholar]
  32. Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL et al. KBASE: The United States Department of Energy Systems Biology knowledgeBase. Nat Biotechnol 2018; 36:566–569 [View Article] [PubMed]
    [Google Scholar]
  33. Shimodaira H, Hasegawa M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 1999; 16:1114–1116 [View Article]
    [Google Scholar]
  34. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Tech Note 101. 1990 pp 1–6
    [Google Scholar]
  35. Busse J, Auling G. Polyamine Pattern as a Chemotaxonomic Marker within the Proteobacteria. Syst Appl Microbiol 1988; 11:1–8 [View Article]
    [Google Scholar]
  36. Busse HJ, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Evol Microbiol 1997; 47:698–708 [View Article]
    [Google Scholar]
  37. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202
    [Google Scholar]
  38. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  39. Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse HJ. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996; 47:39–52
    [Google Scholar]
  40. Stolz A, Busse HJ, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007; 57:572–576 [View Article] [PubMed]
    [Google Scholar]
  41. Bernadet J, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070
    [Google Scholar]
  42. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for Identification of Medical Bacteria Cambridge: Cambridge University Press; 2003
    [Google Scholar]
  43. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T. eds In Methods for general and molecular microbiology, Third Edition. Washington: DC: ASM; 2014 pp 330–393
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004838
Loading
/content/journal/ijsem/10.1099/ijsem.0.004838
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error