1887

Abstract

Two novel Gram-staining-negative, aerobic, cocci-shaped, non-motile, non-spore forming, pink-pigmented bacteria designated strains T6 and T18, were isolated from a biocrust (biological soil crust) sample from the vicinity of the Tabernas Desert (Spain). Both strains were catalase-positive and oxidase-negative, and grew under mesophilic, neutrophilic and non-halophilic conditions. According to the 16S rRNA gene sequences, strains T6 and T18 showed similarities with CGMCC 1.10758 and CP2C (98.11 and 98.55% gene sequence similarity, respectively). The DNA G+C content was 69.80 and 68.96% for strains T6 and T18, respectively; the average nucleotide identity by (ANIb) and digital DNA–DNA hybridization (dDDH) values confirmed their adscription to two novel species within the genus . The predominant fatty acids were summed feature 8 (Cω7Cω6), C, C 2-OH and summed feature 3 (Cω7Cω6). According to he results of the polyphasic study, strains T6 and T18 represent two novel species in the genus (which currently includes only three species), for which names sp. nov. (type strain T6 = CECT 30228=DSM 112073) and sp. nov. (type strain T18=CECT 30229=DSM 112074) are proposed, respectively.

Funding
This study was supported by the:
  • Ministerio de Ciencia, Innovación y Universidades (Award FPU18/02578)
    • Principle Award Recipient: ÀngelaVidal-Verdú
  • Ministerio de Ciencia, Innovación y Universidades (Award FPU17/04184)
    • Principle Award Recipient: EstherMolina-Menor
  • Ministerio de Ciencia, Innovación y Universidades (Award RTI2018-095584-B-C41-42-43-44)
    • Principle Award Recipient: ApplicableNot
  • European CSA on biological standardization, BioRoboost (Award 820699)
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004837
2021-07-22
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/7/ijsem004837.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004837&mimeType=html&fmt=ahah

References

  1. Reddy GS, Nagy M, Garcia-Pichel F. Belnapia moabensis gen. nov., sp. nov., an alphaproteobacterium from biological soil crusts in the Colorado Plateau, USA. Int J Syst Evol Microbiol 2006; 56:51–58 [View Article]
    [Google Scholar]
  2. Jin R, Su J, Liu HY, Wei YZ, QP L. Description of Belnapia rosea sp. nov. and emended description of the genus Belnapia Reddy et al. 2006. Int J Syst Evol Microbiol 2012; 62:705–709 [View Article]
    [Google Scholar]
  3. Jin L, Lee HG, KJ N, SR K, HS K. Belnapia soli sp. nov., a proteobacterium isolated from grass soil. Int J Syst Evol Microbiol 2013; 63:1955–1959 [View Article]
    [Google Scholar]
  4. Molina-Menor E, Gimeno-Valero H, Pascual J, Peretó J, Porcar M. High culturable bacterial diversity from a European desert: the Tabernas desert. Front Microbiol 2021; 11:583120 [View Article]
    [Google Scholar]
  5. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark: DE: MIDI; 1990
    [Google Scholar]
  6. MIDI Sherlock Microbial Identification System Operating Manual, version 6.1 Newark, DE: MIDI Inc; 2008
    [Google Scholar]
  7. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC. Isolation and direct complete nucleotide determination of entire genes: characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 1989; 17:7843–7853 [View Article]
    [Google Scholar]
  8. Stackebrandt E, Liesack W. Nucleic acids and classification. Goodfellow M, O’Donnell A. eds In Handbook of new bacterial systematics London: Academic Press; 1993 pp 152–189
    [Google Scholar]
  9. Felsenstein J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  10. Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 1897; 4:406–425
    [Google Scholar]
  11. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  12. Andrews S. Fastqc: a quality control tool for high throughput sequence data; 2010 http://www.bioinformatics.babraham.ac.uk/projects/fastqc
  13. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article]
    [Google Scholar]
  14. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article]
    [Google Scholar]
  15. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2014; 25:1043–1055 [View Article]
    [Google Scholar]
  16. Brettin T, Davis JJ, Disz R, Edwards RA, Gerdes S. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article]
    [Google Scholar]
  17. Meier-Kolthoff J, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10: [View Article]
    [Google Scholar]
  18. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2015; 32:929–931 [View Article]
    [Google Scholar]
  19. Na S, Kim Y, Yoon S, Ha S, Bae I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article]
    [Google Scholar]
  20. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  21. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 2013; 14:60 [View Article]
    [Google Scholar]
  22. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004837
Loading
/content/journal/ijsem/10.1099/ijsem.0.004837
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error