1887

Abstract

A Gram-positive, aerobic, flagellated, endospore-forming, rod-shaped strain, designated as G13, was isolated from soil. The results of 16S rRNA gene sequence analysis led to the conclusion that strain G13 was phylogenetically related to BR29 (97.5 %) and CECT 7287 (96.9 %) with digital DNA–DNA hybridization values of 21.0 and 21.4 %, and distantly related to CCUG 47242 (94.8 %), type species of the genus , at 19.0 %. The genome size of strain G13 was 5 387 258 bp, with 51.3 mol% G+C content. The predominant fatty acids were summed feature 9 (iso-C 9 and/or C 10-methyl), anteiso-C, iso-C and iso-C. The predominant quinone was menaquinone-7 and the major polar lipids were diphosphatidyglycerol, phosphatidylethanolamine, phosphatidylglycerol, lysylphosphatidylglycerol, three aminophospholipids, two phosphoglycolipids, three aminolipids and two unidentified lipids. Based on the data from phenotypic tests and the genotypic differences between strain G13 and its close phylogenetic relatives, strain G13 represents a new species belonging to the genus , for which the name sp. nov. (=KACC 19905=NBRC 113748) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004835
2021-06-23
2021-07-29
Loading full text...

Full text loading...

References

  1. Kämpfer P, Rosselló-Mora R, Falsen E, Busse HJ, Tindall BJ. Cohnella thermotolerans gen. nov., sp. nov., and classification of “Paenibacillus hongkongensis” as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 2006; 56:781–786 [View Article] [PubMed]
    [Google Scholar]
  2. García-Fraile P, Velázquez E, Mateos PF, Martínez-Molina E, Rivas R. Cohnella phaseoli sp. nov., isolated from root nodules of Phaseolus coccineus in Spain, and emended description of the genus Cohnella. Int J Syst Evol Microbiol 2008; 58:1855–1859 [View Article] [PubMed]
    [Google Scholar]
  3. Khianngam S, Tanasupawat S, Akaracharanya A, Kim KK, Lee KC et al. Cohnella xylanilytica sp. nov. and Cohnella terrae sp. nov., xylanolytic bacteria from soil. Int J Syst Evol Microbiol 2010; 60:2913–2917 [View Article]
    [Google Scholar]
  4. Kudryashova EB, Karlyshe AV, Ariskina EV, Streshinskaya GM, Vinokurova NG et al. Cohnella kolymensis sp. nov., a novel bacillus isolated from Siberian permafrost. Int J Syst Evol Microbiol 2019; 64:781–786
    [Google Scholar]
  5. Jiang L, Pheng S, Lee KC, Kang SW, Jeong JC. Cohnella abietis sp. nov., isolated from Korean fir (Abies koreana) rhizospheric soil of Halla mountain. J Microbiol 2019; 57:953–958 [View Article] [PubMed]
    [Google Scholar]
  6. Cai F, Wang Y, Qi H, Dai J, Yu B. Cohnella luojiensis sp. nov., isolated from soil of a Euphrates poplar forest. Int J Syst Evol Microbiol 2010; 60:1605–1608 [View Article] [PubMed]
    [Google Scholar]
  7. Flores-Félix JD, Carro L, Ramírez-Bahena MH, Tejedor C, Igual JM. Cohnella lupini sp. nov., an endophytic bacterium isolated from root nodules of Lupinus albus. Int J Syst Evol Microbiol 2014; 64:83–87 [View Article] [PubMed]
    [Google Scholar]
  8. Huang Z, Yu Y-J, Bao Y-Y, Xia L, Sheng X-F et al. Cohnella nanjingensis sp. nov., an extracellular polysaccharide-producing bacterium isolated from soil. Int J Syst Evol Microbiol 2014; 64:3320–3324
    [Google Scholar]
  9. Yoon M-H, Ten LN, Im W-T. Cohnella panacarvi sp. nov., a xylanolytic bacterium isolated from ginseng cultivating soil. J Microbiol Biotechnol 2007; 17:913–918
    [Google Scholar]
  10. Jiang F, Dai J, Wang Y, Xue X, Xu M. Cohnella arctica sp. nov., isolated from Arctic tundra soil. Int J Syst Evol Microbiol 2012; 62:817–821 [View Article] [PubMed]
    [Google Scholar]
  11. Yoon JH, Jung YT. Cohnella boryungensis sp. nov., isolated from soil. Antonie van Leeuwenhoek 2012; 101:769–775 [View Article] [PubMed]
    [Google Scholar]
  12. Lee KC, Kim KK, Kim J-S, Kim D-S, Ko S-H. Cohnella collisoli sp. nov., isolated from lava forest soil. Int J Syst Evol Microbiol 2015; 65:3125–3130
    [Google Scholar]
  13. Kim SJ, Weon HY, Kim YS, Kwon SW. Cohnella soli sp. nov. and Cohnella suwonensis sp. nov. Isolated from soil samples in Korea. Journal of Microbiology 2011; 49:1033–1038
    [Google Scholar]
  14. Kim S-J, Weon H-Y, Kim Y-S, Anandham R, Jeon Y-A et al. Cohnella yongneupensis sp. nov. and Cohnella ginsengisoli sp. nov., isolated from two different soils. Int J Syst Evol Microbiol 2010; 60:526–530 [View Article] [PubMed]
    [Google Scholar]
  15. Lee Y, Jeon CO. Cohnella algarum sp. nov., isolated from a freshwater green alga Paulinella chromatophora. Int J Syst Evol Microbiol 2017; 67:4767–4772 [View Article] [PubMed]
    [Google Scholar]
  16. Shiratori H, Tagami Y, Beppu T, Ueda K. Cohnella fontinalis sp. nov., a xylanolytic bacterium isolated from fresh water. Int J Syst Evol Microbiol 2010; 60:1344–1348 [View Article] [PubMed]
    [Google Scholar]
  17. Abou Abdallah R, Bou Khalil J, Andrieu C, Tomeï E, Armstrong N et al. Draft genome and description of Cohnella massiliensis sp. nov., a new bacterial species isolated from the blood culture of a hemodialysis patient. Arch Microbiol 2019; 201:305–312 [View Article] [PubMed]
    [Google Scholar]
  18. Hameed A, Hung M-H, Lin S-Y, Hsu Y-H, Liu Y-C et al. Cohnella formosensis sp. nov., a xylanolytic bacterium isolated from the rhizosphere of Medicago sativa L. Int J Syst Evol Microbiol 2013; 63:2806–2812 [View Article] [PubMed]
    [Google Scholar]
  19. Kämpfer P, Glaeser SP, Mcinroy JA, Busse HJ. Cohnella rhizosphaerae sp. nov., isolated from the rhizosphere environment of zea mays. Int J Syst Evol Microbiol 2014; 64:1811–1816 [View Article] [PubMed]
    [Google Scholar]
  20. Khianngam S, Tanasupawat S, Akaracharanya A, Kim KK, Lee KC et al. Cohnella thailandensis sp. nov., a xylanolytic bacterium from Thai soil. Int J Syst Evol Microbiol 2010; 60:2284–2287 [View Article] [PubMed]
    [Google Scholar]
  21. Maeng SH, Kim MK, Jang JH, Yi H, Subramani G. Cohnella candidum sp. nov., radiation-resistant bacterium from soil. Antonie van Leeuwenhoek 2019; 112:1029–1037 [View Article] [PubMed]
    [Google Scholar]
  22. Khianngam S, Tanasupawat S, Akaracharanya A, Kim KK, Lee KC et al. Cohnella cellulosilytica sp. nov., isolated from buffalo faeces. Int J Syst Evol Microbiol 2012; 62:1921–1925 [View Article] [PubMed]
    [Google Scholar]
  23. Kim J, Chhetri G, Kim I, Kim H, Kim MK et al. Methylobacterium terrae sp. nov., a radiation-resistant bacterium isolated from gamma ray-irradiated soil. J Microbiol 2019; 57:959–966 [View Article] [PubMed]
    [Google Scholar]
  24. Weisburg W, Barns S, Pelletier D, Lane D. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  25. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617
    [Google Scholar]
  26. Pruesse E, Peplies J, Glöckner FO. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article] [PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  29. Fitch WM. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  30. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  31. Aziz RK, Bartels D, Best A, DeJongh M, Disz T et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genomics 2008; 9:1–15
    [Google Scholar]
  32. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  33. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  34. Lee I, Kim YO, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103
    [Google Scholar]
  35. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000; 28:33–36 [View Article]
    [Google Scholar]
  36. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  37. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  38. Kim I, Chhetri G, Kim J, Kang M, Seo T. Lewinella aurantiaca sp. nov., a carotenoid pigment-producing bacterium isolated from surface seawater. Int J Syst Evol Microbiol 2020; 70:6180–6187 [View Article] [PubMed]
    [Google Scholar]
  39. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology Washington, DC: USA: ASM Press; 2007 pp 330–393
    [Google Scholar]
  40. Breznak JA, Costilow RN. Physicochemical factors in growth. In Methods for General and Molecular Microbiology ASM Press; 2014 pp 309–329
    [Google Scholar]
  41. Sasser M. MIDI Sherlock Microbial Identification System, MIDI Inc Tech note #101. 2009 pp 1–6
    [Google Scholar]
  42. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 1981; 45:316–354 [PubMed]
    [Google Scholar]
  43. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241
    [Google Scholar]
  44. Komagata K, Suzuki KI. 4 lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19:161–207
    [Google Scholar]
  45. Chhetri G, Kim J, Kim I, Lee B, Jang W. Adhaeribacter rhizoryzae sp. nov., a fibrillar matrix-producing bacterium isolated from the rhizosphere of rice plant. Int J Syst Evol Microbiol 2020; 70:5382–5388 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004835
Loading
/content/journal/ijsem/10.1099/ijsem.0.004835
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error