1887

Abstract

A novel Gram-stain positive, facultatively anaerobic, motile, irregularly rod-shaped bacterium, designated GY 10621, was isolated from rhizosphere soil of in Beihai City, Guangxi Province, PR China, and characterized using a polyphasic taxonomic approach. GY 10621 was positive for catalase and oxidase. Growth occurred at 4–42 °C (optimum 30–37 °C), at pH 5.0–9.0 (optimum pH 7.0) and in the presence of 0–5% NaCl (w/v) (optimum 1–3%). The main menaquinones were MK-9 (H) (92.2 %) and MK-10 (7.8 %). The major cellular fatty acids were anteiso-C and C. The peptidoglycan was the type A4α (-Lys-Ser--Glu). The polar lipids included four phosphoglycolipids, four glycolipids, an unidentified lipid and six unidentified phospholipids. The DNA G+C content of the type strain was 71.7 mol%. On the basis of the results of 16S rRNA gene analysis, the type strain of a species with a validly published name with the highest similarity to GY 10621 was KCTC 13155 (97.16 %), followed by NBRC 16159 (96.39 %). The calculated results indicated that compared with GY 10621, the average nucleotide identity (ANI) values of three strains closely related to GY 10621 (the two aforementioned type strains and ‘’ Marseille-P3815) were 74.18–94.97 %, and the digital DNA–DNA hybridization (dDDH) values were 20.3–60.6 %. The results of 16S rRNA-based and genome-based phylogenetic tree analysis indicated that GY 10621 should be assigned to the genus . On the basis of evidence from polyphasic studies, GY 10621 should be designated as representing a novel species of the genus , for which the name sp. nov. is proposed. The type strain is GY 10621 (=CGMCC 1.17411=KCTC 49515).

Funding
This study was supported by the:
  • the National Natural Science Foundation of China (Award 32060001)
    • Principle Award Recipient: YiJiang
  • the National Natural Science Foundation of China (Award 81960164)
    • Principle Award Recipient: LifangYang
  • the Specific research project of Guangxi for research bases and talents (Award AD18281066)
    • Principle Award Recipient: MingguoJiang
  • the Science and Technology Major Project of Guangxi (Award AA18242026)
    • Principle Award Recipient: MingguoJiang
  • the National Natural Science Foundation of China (Award 31660005)
    • Principle Award Recipient: MingguoJiang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004829
2021-06-08
2024-03-29
Loading full text...

Full text loading...

References

  1. Fernández-Garayzábal JF, Dominguez L, Pascual C, Jones D, Collins MD. Phenotypic and phylogenetic characterization of some unknown coryneform bacteria isolated from bovine blood and milk: Description of Sanguibacter gen.Nov. Lett Appl Microbiol 1995; 20:69–75 [View Article][PubMed]
    [Google Scholar]
  2. Hong SG, Lee YK, Yim JH, Chun J, Lee HK. Sanguibacter antarcticus sp. Nov., isolated from antarctic sea sand. Int J Syst Evol Microbiol 2008; 58:50–52 [View Article][PubMed]
    [Google Scholar]
  3. Pikuta EV, Lyu Z, Williams MD, Patel NB, Liu Y. Sanguibacter gelidistatuariae sp. nov., a novel psychrotolerant anaerobe from an ice sculpture in Antarctica, and emendation of descriptions of the family Sanguibacteraceae, the genus Sanguibacter and species S. antarcticus, S. inulinus, S. kedieii, S. marinus, S. soli and S. suarezii . Int J Syst Evol Microbiol 2017; 67:1442–1450[PubMed]
    [Google Scholar]
  4. Pascual C, Collins MD, Grimont PA, Dominguez L, Fernandez-Garayzabal JF. Sanguibacter inulinus sp. nov. Int J Syst Bacteriol 1996; 46:811–813[PubMed]
    [Google Scholar]
  5. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria . Front Microbiol 2018; 9:2007[PubMed]
    [Google Scholar]
  6. Huang Y, Dai X, He L, Wang YN, Wang BJ. Sanguibacter marinus sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2005; 55:1755–1758[PubMed]
    [Google Scholar]
  7. Kim MK, Pulla RK, Kim SY, TH Y, Soung NK. Sanguibacter soli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2008; 58:538–541
    [Google Scholar]
  8. Han SJ, Park H, Lee SG, Lee HK, Yim JH. Optimization of cold-active chitinase production from the Antarctic bacterium, Sanguibacter antarcticus KOPRI 21702. Appl Microbiol Biotechnol 2011; 89:613–621[PubMed]
    [Google Scholar]
  9. Lee SG, Koh HY, Han SJ, Park H, DC N. Expression of recombinant endochitinase from the Antarctic bacterium, Sanguibacter antarcticus KOPRI 21702 in Pichia pastoris by codon optimization. Protein Expr Purif 2010; 71:108–114
    [Google Scholar]
  10. Kim JK, Cui CH, Yoon MH, Kim SC, WT I. Bioconversion of major ginsenosides Rg1 to minor ginsenoside F1 using novel recombinant ginsenoside hydrolyzing glycosidase cloned from Sanguibacter keddieii and enzyme characterization. J Biotechnol 2012; 161:294–301
    [Google Scholar]
  11. Lamballerie de, Zandotti C, Vignoli C, Bollet C, de Micco P. A one-step microbial DNA extraction method using “Chelex 100” suitable for gene amplification. Res Microbiol 1992; 143:785–790
    [Google Scholar]
  12. Chun J, Goodfellow M. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 1995; 45:240–245[PubMed]
    [Google Scholar]
  13. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 1989; 17:7843–7853[PubMed]
    [Google Scholar]
  14. Yoon SH, SM H, Kwon S, Lim J, Kim Y. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  16. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376[PubMed]
    [Google Scholar]
  17. Fitch WM. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst Biol 1971; 20:406–416
    [Google Scholar]
  18. Nei M, Kumar S. Molecular Evolution and Phylogenetics Oxford University Press; 2000
    [Google Scholar]
  19. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729[PubMed]
    [Google Scholar]
  20. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120[PubMed]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985; 39:783–791[PubMed]
    [Google Scholar]
  22. Bilen M, Founkou MDM, Cadoret F, Dubourg G, Daoud Z. Sanguibacter massiliensis sp. nov., Actinomyces minihominis sp. nov., Clostridium minihomine sp. nov., Neobittarella massiliensis gen. nov. and Miniphocibacter massiliensis gen. nov., new bacterial species isolated by culturomics from human stool samples. New Microbes New Infect 2018; 24:21–25[PubMed]
    [Google Scholar]
  23. Li R, Zhu H, Ruan J, Qian W, Fang X. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20:265–272[PubMed]
    [Google Scholar]
  24. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714
    [Google Scholar]
  25. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T. The RAST Server: rapid annotations using subsystems technology. BMC genomics 2008; 9:75[PubMed]
    [Google Scholar]
  26. Yoon SH, SM H, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286
    [Google Scholar]
  27. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60[PubMed]
    [Google Scholar]
  28. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 2017; 45:D535–D542
    [Google Scholar]
  29. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131[PubMed]
    [Google Scholar]
  30. Allen JL. A modified Ziehl-Neelsen stain for mycobacteria. Med Lab Sci 1992; 49:99–102[PubMed]
    [Google Scholar]
  31. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in Actinomycetes and Corynebacteria. J Gen Microbiol 1977; 100:221–230
    [Google Scholar]
  32. Kroppenstedt Reiner M. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367
    [Google Scholar]
  33. Komagata K, Suzuki K-. I. Lipid and cell-wall analysis in bacterial systematics. Method Microbiol 1988; 19:161–207
    [Google Scholar]
  34. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117
    [Google Scholar]
  35. Sasser M, Kunitsky C, Jackoway G, Ezzell JW, Teska JD. Identification of Bacillus anthracis from culture using gas chromatographic analysis of fatty acid methyl esters. J AOAC Int 2005; 88:178–181[PubMed]
    [Google Scholar]
  36. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004829
Loading
/content/journal/ijsem/10.1099/ijsem.0.004829
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error