1887

Abstract

A Gram-stain-negative, aerobic, non-flagellated, coccoid, ovoid or rod-shaped bacterial strain, TSTF-M16, was isolated from a tidal flat on the Yellow Sea, Republic of Korea. The neighbour-joining phylogenetic tree of 16S rRNA gene sequences showed that strain TSTF-M16 fell within a clade comprising the type strains of species. Strain TSTF-M16 exhibited 16S rRNA gene sequence similarities of 98.5 and 98.1 % to the type strains of and , respectively, and 96.2–97.8 % to the type strains of the other species. The average nucleotide identity and digital DNA–DNA hybridization values between the genomic sequences of strain TSTF-M16 and the type strains of 16 species were 70.6–74.2 and 17.9–19.0 %, respectively. The DNA G+C content of strain TSTF-M16 from genomic sequence data was 59.26 mol%. Strain TSTF-M16 contained Q-10 as the predominant ubiquinone and C 7 as the major fatty acid. The major polar lipids of strain TSTF-M16 were phosphatidylcholine, phosphatidylglycerol, one unidentified aminolipid and one unidentified lipid. Distinguished phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain TSTF-M16 is separated from recognized species. On the basis of the data presented here, strain TSTF-M16 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is TSTF-M16 (=KACC 21645=NBRC 114501).

Funding
This study was supported by the:
  • Rural Development Administration (Award PJ014442)
    • Principle Award Recipient: Jung-HoonYoon
  • National Institute of Biological Resources (Award project on survey of indigenous species of Korea)
    • Principle Award Recipient: Jung-HoonYoon
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004827
2021-06-23
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/6/ijsem004827.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004827&mimeType=html&fmt=ahah

References

  1. Garrity GM, Bell JA, Lilburn T. Family I. Rhodobacteraceae fam. nov. Brenner D, Krieg N, Staley J, Garrity G. eds In Bergey’s Manual of Systematic Bacteriology, 2nd ed, Vol. 2 (The proteobacteria), Part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) New York: Springer; 2005 p 161
    [Google Scholar]
  2. Sorokin DY. Sulfitobacter pontiacus gen. nov., sp. nov. - a new heterotrophic bacterium from the Black Sea, specialized on sulfite oxidation. Mikrobiologiya 1995; 64:354
    [Google Scholar]
  3. Parte AC. LPSN-List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article] [PubMed]
    [Google Scholar]
  4. Kumari P, Bhattacharjee S, Poddar A, Das SK. Sulfitobacter faviae sp. nov., isolated from the coral Favia veroni. Int J Syst Evol Microbiol 2016; 66:3786–3792 [View Article] [PubMed]
    [Google Scholar]
  5. Park A-Y, Teeravet S, Pheng S, Lee JR, Kim S-G et al. Sulfitobacter aestuarii sp. nov., a marine bacterium isolated from a tidal flat of the Yellow Sea. Int J Syst Evol Microbiol 2018; 68:1771–1775 [View Article] [PubMed]
    [Google Scholar]
  6. Park S, Kim IK, Lee J-S, Yoon J-H. Sulfitobacter sabulilitoris sp. nov., isolated from marine sand. Int J Syst Evol Microbiol 2019; 69:3230–3236 [View Article] [PubMed]
    [Google Scholar]
  7. Pukall R, Buntefuβ D, Frühling A, Rohde M, Kroppenstedt RM. Sulfitobacter mediterraneus sp. nov., a new sulfite-oxidizing member of the α-Proteobacteria. Int J Syst Bacteriol 1999; 49:513–519
    [Google Scholar]
  8. Labrenz M, Tindall BJ, Lawson PA, Collins MD, Schumann P. Staleya guttiformis gen. nov., sp. nov. and Sulfitobacter brevis sp. nov., α-3-Proteobacteria from hypersaline, heliothermal and meromictic antarctic Ekho Lake. Int J Syst Evol Microbiol 2000; 50:303–313
    [Google Scholar]
  9. Ivanova EP, Gorshkova NM, Sawabe T, Zhukova NV, Hayashi K. Sulfitobacter delicatus sp. nov. and Sulfitobacter dubius sp. nov., respectively from a starfish (Stellaster equestris) and sea grass (Zostera marina. Int J Syst Evol Microbiol 2004; 54:475–480 [View Article] [PubMed]
    [Google Scholar]
  10. Yoon J-H, Kang S-J, Oh T-K. Sulfitobacter marinus sp. nov., isolated from seawater of the East Sea in Korea. Int J Syst Evol Microbiol 2007; 57:302–305
    [Google Scholar]
  11. Yoon J-H, Kang S-J, Lee M-H, Oh T-K. Description of Sulfitobacter donghicola sp. nov., isolated from seawater of the East Sea in Korea, transfer of Staleya guttiformis Labrenz et al. 2000 to the genus Sulfitobacter as Sulfitobacter guttiformis comb. nov. and emended description of the genus Sulfitobacter. Int J Syst Evol Microbiol 2007; 57:1788–1792
    [Google Scholar]
  12. Park JR, Bae J-W, Nam Y-D, Chang H-W, Kwon H-Y. Sulfitobacter litoralis sp. nov., a marine bacterium isolated from the East Sea, Korea. Int J Syst Evol Microbiol 2007; 57:692–695 [View Article] [PubMed]
    [Google Scholar]
  13. Fukui Y, Abe M, Kobayashi M, Shimada Y, Saito H. Sulfitobacter porphyrae sp. nov., isolated from the red alga Porphyra yezoensis. Int J Syst Evol Microbiol 2014; 64:438–443 [View Article] [PubMed]
    [Google Scholar]
  14. Kwak M-J, Lee J-S, Lee KC, Kim KK, Eom MK et al. Sulfitobacter geojensis sp. nov., Sulfitobacter noctilucae sp. nov., and Sulfitobacter noctilucicola sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 2014; 64:3760–3767 [View Article] [PubMed]
    [Google Scholar]
  15. Park S, Jung Y-T, Won S-M, Park J-M, Yoon J-H. Sulfitobacter undariae sp. nov., isolated from a brown algae reservoir. Int J Syst Evol Microbiol 2015; 65:1672–1678 [View Article] [PubMed]
    [Google Scholar]
  16. Yoon J-H, Lee ST, Kim S-B, Kim WY, Goodfellow M. Restriction fragment length polymorphism analysis of PCR-amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int J Syst Bacteriol 1997; 47:111–114
    [Google Scholar]
  17. Yoon J-H, Kim H, Kim I-G, Kang KH, Park Y-H. Erythrobacter flavus sp. nov., a slight halophile from the East Sea in Korea. Int J Syst Evol Microbiol 2003; 53:1169–1174 [View Article] [PubMed]
    [Google Scholar]
  18. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  19. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  20. Lee I, Chalita M, Ha S-M, Na S-I, Yoon SH. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057
    [Google Scholar]
  21. Richter M, Rosselló-Móra R, Glöckner FO, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2015; 16:btv681
    [Google Scholar]
  22. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  23. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  24. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  25. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005; 102:2567–2572 [View Article] [PubMed]
    [Google Scholar]
  26. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  27. Park S, Jung Y-T, Choi SJ, Yoon J-H. Erythrobacter aquimixticola sp. nov., isolated from the junction between the ocean and a freshwater spring. Int J Syst Evol Microbiol 2017; 67:2964–2969 [View Article] [PubMed]
    [Google Scholar]
  28. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  29. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M. n.d An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984:233–241
    [Google Scholar]
  30. Embley TM, Wait R. Structural lipids of eubacteria. Goodfellow M, O’Donnell A. eds In Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994 pp 121–161
    [Google Scholar]
  31. Park S, Won S-M, Kim H, Park D-S, Yoon J-H. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64:2969–2974 [View Article] [PubMed]
    [Google Scholar]
  32. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Mocrobiol 1987; 19:1–67
    [Google Scholar]
  33. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51:1997–2006 [View Article] [PubMed]
    [Google Scholar]
  34. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press; 1993
    [Google Scholar]
  35. Baumann P, Baumann L. The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. Starr M, Stolp H, Trüper H, Balows A, Schlegel H. eds In The Prokaryotes Berlin: Springer; 1981 pp 1302–1331
    [Google Scholar]
  36. Cohen-Bazire G, Sistrom WR, Stanier RY. Kinetic studies of pigment synthesis by nonsulfur purple bacteria. J Cell Comp Physiol 1957; 49:25–68 [View Article] [PubMed]
    [Google Scholar]
  37. Staley JT. Prosthecomicrobium and ancalomicrobium: New prosthecate freshwater bacteria. J Bacteriol 1968; 95:1921–1942 [View Article] [PubMed]
    [Google Scholar]
  38. Park S, Jung Y-T, Choi SJ, Yoon J-H. Erythrobacter aquimixticola sp. nov., isolated from the junction between the ocean and a freshwater spring. Int J Syst Evol Microbiol 2017; 67:2964–2969 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.004827
Loading
/content/journal/ijsem/10.1099/ijsem.0.004827
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error