1887

Abstract

Two bacterial strains, designated as 1-4-3 and 1-4-4, were isolated from a mangrove sediment cultured with coastal seawater. The cells were Gram-stain-negative, motile, short, rod-shaped bacteria with flagella. Growth occurred at 4–37 °C, pH 7.0–9.0, and 0–7% NaCl. The predominant fatty acids of the novel strains were C c, C cyclo 8c, C, and C. A phylogenetic analysis based on 16S rRNA gene sequences and whole genome phylogeny analysis based on distance matrix revealed an affiliation between the two strains and the genus , with closest sequence similarity to 4M3-2 (96.41 and 96.64% similarity, respectively) and (96.01 and 96.23% similarity, respectively). The DNA G+C content of strain 1-4-3 was 66.80 mol%. Strain 1-4-3 displayed low DNA–DNA relatedness to 4M3-2, with an average nucleotide identity value of 77.47 % and digital DNA–DNA hybridization value of 22.83 %. Genotypic, chemotaxonomic, and phenotypic data indicate that strains 1-4-3 and 1-4-4 represent a novel species of the genus , for which we propose the name sp. nov. The type strain is 1-4-3 (=LMG 31693=CGMCC 1.18507).

Funding
This study was supported by the:
  • Key Technologies Research and Development Program (Award 2017YFC0506101)
    • Principle Award Recipient: GuangchengChen
  • Ministry of Natural Resources (Award 2020017)
    • Principle Award Recipient: GuangchengChen
  • China Ocean Mineral Resources Research and Development Association (Award DY135-E2-5-06)
    • Principle Award Recipient: HaoHuang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004820
2021-07-05
2021-07-29
Loading full text...

Full text loading...

References

  1. Rathsack K, Reitner J, Stackebrandt E, Tindall BJ. Reclassification of Aurantimonas altamirensis (Jurado et al. 2006), Aurantimonas ureilytica (Weon et al. 2007) and Aurantimonas frigidaquae (Kim et al. 2008) as members of a new genus, Aureimonas gen. nov., as Aureimonas altamirensis gen. nov., comb. nov., Aureimonas ureilytica comb. nov. and Aureimonas frigidaquae comb. nov., and emended descriptions of the genera Aurantimonas and Fulvimarina. Int J Syst Evol Microbiol 2011; 61:2722–2728 [View Article] [PubMed]
    [Google Scholar]
  2. Jurado V, Gonzalez JM, Laiz L, Saiz-Jimenez C. Aurantimonas altamirensis sp. nov., a member of the order Rhizobiales isolated from Altamira cave. Int J Syst Evol Microbiol 2006; 56:2583–2585 [View Article] [PubMed]
    [Google Scholar]
  3. Weon H-Y, Kim B-Y, Yoo S-H, Joa J-H, Lee KH et al. Aurantimonas ureilytica sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2007; 57:1717–1720 [View Article] [PubMed]
    [Google Scholar]
  4. Kim MS, Hoa KTQ, Baik KS, Park SC, Seong CN. Aurantimonas frigidaquae sp. nov., isolated from a water-cooling system. Int J Syst Evol Microbiol 2008; 58:1142–1146 [View Article] [PubMed]
    [Google Scholar]
  5. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of prokaryotic names with standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  6. Li F-N, Tuo L, Pan Z, Guo M, Lee SM-Y et al. Aureimonas endophytica sp. nov., a novel endophytic bacterium isolated from Aegiceras corniculatum. Int J Syst Evol Microbiol 2017; 67:2934–2940 [View Article] [PubMed]
    [Google Scholar]
  7. Lin S-Y, Hameed A, Liu Y-C, Hsu Y-H, Lai W-A et al. Aureimonas ferruginea sp. nov. and Aureimonas rubiginis sp. nov., two siderophore-producing bacteria isolated from rusty iron plates. Int J Syst Evol Microbiol 2013; 63:2430–2435 [View Article] [PubMed]
    [Google Scholar]
  8. Tuo L, Yan X-R. Aureimonas flava sp. nov., a novel endophytic bacterium isolated from leaf of Acrostichum aureum. Int J Syst Evol Microbiol 2019; 69:846–851 [View Article] [PubMed]
    [Google Scholar]
  9. Aydogan EL, Busse H-J, Moser G, Müller C, Kämpfer P et al. Aureimonas galii sp. nov. and Aureimonas pseudogalii sp. nov. isolated from the phyllosphere of Galium album. Int J Syst Evol Microbiol 2016; 66:3345–3354 [View Article] [PubMed]
    [Google Scholar]
  10. Guo B, Liu Y, Gu Z, Shen L, Liu K et al. Aureimonas glaciei sp. nov., isolated from an ice core. Int J Syst Evol Microbiol 2017; 67:485–488 [View Article] [PubMed]
    [Google Scholar]
  11. Cho Y, Lee I, Yang YY, Baek K, Yoon SJ et al. Aureimonas glaciistagni sp. nov., isolated from a melt pond on Arctic sea ice. Int J Syst Evol Microbiol 2015; 65:3564–3569 [View Article] [PubMed]
    [Google Scholar]
  12. Madhaiyan M, Hu CJ, Jegan Roy J, Kim S-J, Weon H-Y et al. Aureimonas jatrophae sp. nov. and Aureimonas phyllosphaerae sp. nov., leaf-associated bacteria isolated from Jatropha curcas L. Int J Syst Evol Microbiol 2013; 63:1702–1708 [View Article] [PubMed]
    [Google Scholar]
  13. Li Y, Xu G, Lin C, Wang X, Piao C-G. Aureimonas populi sp. nov., isolated from poplar tree bark. Int J Syst Evol Microbiol 2018; 68:487–491 [View Article] [PubMed]
    [Google Scholar]
  14. Zhang K, Jiang L-Q, Wang L-S, An D-F, Lang L et al. Aureimonas leprariae sp. nov., isolated from a Lepraria sp. lichen. Curr Microbiol 2020; 77:313–319 [View Article] [PubMed]
    [Google Scholar]
  15. Huang M-J, Huang W-L, Narsing Rao MP, Xiao M, Huang H-Q et al. Aureimonas psammosilene sp. nov., isolated from the roots of Psammosilene tunicoides. Arch Microbiol 2020; 202:1939–1944 [View Article] [PubMed]
    [Google Scholar]
  16. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics John Wiley & Sons Ltd; 1991 pp 115–175
    [Google Scholar]
  17. Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 2003; 55:541–555 [View Article] [PubMed]
    [Google Scholar]
  18. Embley TM. The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. Lett Appl Microbiol 1991; 13:171–174 [View Article] [PubMed]
    [Google Scholar]
  19. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008; 74:2461–2470 [View Article] [PubMed]
    [Google Scholar]
  20. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article] [PubMed]
    [Google Scholar]
  21. Kumar S, Tamura K, Nei M. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 2004; 5:150–163 [View Article] [PubMed]
    [Google Scholar]
  22. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–IN1 [View Article]
    [Google Scholar]
  23. Johnson JL. Similarity analysis of DNAs. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 655–682
    [Google Scholar]
  24. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  25. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  26. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607-–6654
    [Google Scholar]
  27. Dong X, Cai M. Systematic Identification Manual of Common Bacteria Beijing: Science Press; 2001
    [Google Scholar]
  28. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45:493–496 [View Article] [PubMed]
    [Google Scholar]
  29. Fraser SL, Jorgensen JH. Reappraisal of the antimicrobial susceptibilities of Chryseobacterium and Flavobacterium species and methods for reliable susceptibility testing. Antimicrob Agents Chemother 1997; 41:2738–2741 [View Article] [PubMed]
    [Google Scholar]
  30. Andrews JM. for the BSAC Working Party on Susceptibility Testing BSAC standardized disc susceptibility testing method (version 7). J Antimicrob Chemother 2008; 62:256–278 [View Article]
    [Google Scholar]
  31. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. In Colwell RR, Grigorova R. (editors) Methods in Microbiology 19 London: Academic Press; 1987 pp 161–208
    [Google Scholar]
  32. Collins MD. Analysis of isoprenoid quinones. In Gottschalk G. editor Methods in Microbiology 18 London: Academic Press; 1985 pp 329–363
    [Google Scholar]
  33. Kates M. Lipid extraction procedures. In Kates M. editor Techniques of Lipidology Isolation, Analysis, and Identification of Lipids Amsterdam: Elsevier Science Publisher; 1986 pp 100–111
    [Google Scholar]
  34. Vaskovsky VE, Kostetsky EY. Modified spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res 1968; 9:396 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004820
Loading
/content/journal/ijsem/10.1099/ijsem.0.004820
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error